Skip to main content
Log in

Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a mathematical model of the cytotoxic T lymphocyte response to the growth of an immunogenic tumor. The model exhibits a number of phenomena that are seenin vivo, including immunostimulation of tumor growth, “sneaking through” of the tumor, and formation of a tumor “dormant state”. The model is used to describe the kinetics of growth and regression of the B-lymphoma BCL1 in the spleen of mice. By comparing the model with experimental data, numerical estimates of parameters describing processes that cannot be measuredin vivo are derived. Local and global bifurcations are calculated for realistic values of the parameters. For a large set of parameters we predict that the course of tumor growth and its clinical manifestation have a recurrent profile with a 3- to 4-month cycle, similar to patterns seen in certain leukemias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahms, S. I. and Z. Brahmi. 1988. Mechanism of K562-induced human natural killer cell inactivation using highly enriched effector cells isolated via a new single-step sheep erythrocyte rossette assay.Ann. Inst. Pasteur, Immunol. 139, 361–381.

    Article  Google Scholar 

  • Albert, A., M. Freedman and A. S. Perelson. 1980. Tumors and the immune system: The effects of a tumor growth modulator.Math. Biosciences 50, 25–58.

    Article  MATH  MathSciNet  Google Scholar 

  • Alsabti, A. 1978. Tumor dormancy: A review.Tumor Res. 13, 1–13.

    Google Scholar 

  • Beaumont, R. A. and R. S. Pierce. 1963.The Algebraic Foundations of Mathematics. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Brondz, B. D. 1987.T Lymphocytes and Their Receptors in Immunological Recognition (in Russian). Moscow: Nauka.

    Google Scholar 

  • Callewaert, D. M., P. Meyers, J. Hiernaux and G. Radcliff. 1988. Kinetics of cellular cytotoxicity mediated by cloned cytotoxic T lymphocytes.Immunobiol. 178, 203–214.

    Google Scholar 

  • Chen, L., Y. Suzuki, C.-M. Liu and E. F. Wheelock. 1990. Maintenance and cure of the L5178Y murine tumor dormant state by interleukin 2: Dependence of interleukin 2 on induced inteferon-g and on tumor necrosis factor for its antitumor effects.Cancer Res. 50, 1368–1374.

    Google Scholar 

  • Colmeraver, M. E., I. A. Loziol and V. H. Pilch. 1980. Enhancement of metastasis development by BCG immunotherapy.J. Surg. Oncology 15, 235–241.

    Google Scholar 

  • De Boer, R. J. and M. C. Boerlijst. 1993. Diversity and virulence thresholds in AIDS (submitted).

  • De Boer, R. J. and P. Hogeweg. 1985. Tumor escape from immune elimination: Simplified precursor bound cytotoxicity models.J. theor. Biol. 113, 719–736.

    Google Scholar 

  • De Boer, R. J. and P. Hogeweg. 1986. Interactions between macrophages and T-lymphocytes: Tumor sneaking through intrinsic to helper T cell dynamics.J. theor. Biol. 120, 331–354.

    Article  Google Scholar 

  • Deichman, G. I. 1979. Current concepts on the immunological interaction between the tumor and the body. InTumor Growth as Problem of Development Biology, pp. 208–223. Moscow: Nauka.

    Google Scholar 

  • Deichman, G. I., T. E. Klyuchareva, L. M. Kashkina and V. A. Matveyeva. 1979. Reproducibility and relation to specific and nonspecific antitumor resistance of the “sneaking through” phenomenon.Int. J. Cancer 23, 571–584.

    Google Scholar 

  • DeLisi, C. and A. Rescigno. 1977. Immune surveillance and neoplasia—1. A minimal mathematical model.Bull. math. Biol. 39, 201–221.

    Article  MATH  MathSciNet  Google Scholar 

  • Dozmorov, I. M. and V. A. Kuznetsov. 1988. The role of cellular ratios in the maintenance of organism immune homeostasis. InProblems and Perspectives of Modern Immunology: Methodological Analysis (in Russian), R. V. Petrov and V. P. Lozovoy (Eds), pp. 43–66. Novosibirsk: Nauka.

    Google Scholar 

  • Emanuel, N. M. 1981. Chemical and biological kinetics.Russian Chem. Rev. 50, 901–947.

    Article  Google Scholar 

  • Fidler, I. J. 1973.In vitro studies of cellular-mediated immunostimulation of tumor growth.J. Natl Cancer Inst. 50, 1307–1312.

    Google Scholar 

  • Fishelson, Z. and G. Berke. 1981. Tumor cell destruction by cytotoxic T lymphocytes: The basis of reduced antitumor cell activity in syngeneic hosts.J. Immunol. 125, 2048–2052.

    Google Scholar 

  • Gatenby, P. A., A. Basten and P. Creswick. 1981. “Sneaking through”: A T-cell-dependent phenomenon.Br. J. Cancer 44, 753–756.

    Google Scholar 

  • Gray D. and T. Leanderson. 1990. Expansion, selection and maintenance of memory B-cell clones.Current Topics Microbiol. Immunol. 159, 1–17.

    Google Scholar 

  • Greenberg, P. D. 1991. Adoptive T cell therapy of tumors: Mechanisms operative in the recognition and climination of tumor cells.Adv. Immunol. 49, 281–355.

    Article  Google Scholar 

  • Grossman, Z. and G. Berke. 1980. Tumor escape from immune elimination.J. theor. Biol. 83, 267–296.

    Article  Google Scholar 

  • Hellström, K. E. and I. Hellström. 1969. Cellular immunity against tumor antigens.Adv. Cancer Res. 12, 167–223.

    Google Scholar 

  • Herberman, R. B. 1974. Cell-mediated immunity to tumor cells.Adv. Cancer Res. 19, 207–263.

    Google Scholar 

  • Hiernaux, J. R., R. Lefever, C. Uyttenhove and T. Boon. 1986. Tumor dormancy as a result of simple competition between tumor cells and cytolytic effector cells. InParadoxes in Immunology, G. W. Hoffman, J. G. Levy and G. T. Nepom (Eds), pp. 95–109. Florida, CRC Press.

    Google Scholar 

  • Hooke, R. and T. A. Jeeves. Direct search solution of numerical and statistical problems.J. Assoc. Comput. Machin. 8, 212–229.

  • Jeejeebhoy, H. F. 1977. Stimulation of tumor growth by the immune response.Int. J. Cancer 13, 665–678.

    Google Scholar 

  • Krikorian, J. G., C. S. Portlock, D. P. Cooney and S. A. Rosenberg. 1980. Spontaneous regression of non-Hodgkin's lymphoma: A report of nine cases.Cancer 46, 2093–2099.

    Article  Google Scholar 

  • Krolick, K. A., P. C. Isakson, I. W. Uhr and E. S. Vitetta. 1979. BCL1, a murine model for chronic lymphocytic leukemia: Use of the surface immunoglobulin idiotype for the detection and treatment of tumor.J. Immunol. Rev. 48, 81–106.

    Article  Google Scholar 

  • Kukain, R. A., L. I. Nagayeva, V. P. Lozha, S. Ya Laganovsky, S. V. Chapenko, O. I. Bratsslavskaya, V. P. Ose and G. V. Kudeleva. 1982.Bovine Leukemia Virus (in Russian). Riga: Zinatne.

    Google Scholar 

  • Kuznetsov, V. A. 1979. The dynamics of cellular immunological antitumor reactions. I. Synthesis of a multi-level model. InMathematical Methods of Systems Theory (in Russian), Vol. 1, pp. 57–71.

  • Kuznetsov, V. A. 1981. A model for cytotoxic cellular immune process and its experimental application (in Russian). InApplied Problems in the Theory of Dynamic Systems, Gorky, Vol. 4, pp. 14–43. Manuscript submitted to the All-Union Institute of Science and Technology Information, 25 December 1981, No. 5851.

  • Kuznetsov, V. A. 1983. Bifurcations in a model of the two-level reactivity of an immune system to antigens of a developing neoplasm. InDynamics of Biological Populations, Gorky (in Russian), pp. 52–64. Gor'ki State University.

  • Kuznetsov, V. A. 1984. Analysis of population dynamics of cells that exhibit natural resistance to tumors.Soviet Immunol. (Immunologiya) 3, 58–68.

    Google Scholar 

  • Kuznetsov, V. A. 1987. Mathematical modelling of the processes of dormant tumors formation and immunostimulation of their growth (in Russian).Cybernetics 4, 96–102.

    MATH  Google Scholar 

  • Kuznetsov, V. A. 1988. Nonlinear effects of the dynamics of antitumor cellular immune system (preprint; in Russian). Moscow: Institute of Chemical Physics, Academy of Sciences, USSR.

    Google Scholar 

  • Kuznetsov, V. A. 1991. A mathematical model for the interaction between cytotoxic lymphocytes and tumour cells. Analysis of the growth, stabilization and regression of the B cell lymphoma in mice chimeric with respect to the major histocompatibility complex.Biomed. Sci. 2, 465–476.

    Google Scholar 

  • Kuznetsov, V. A. 1992.Dynamics of Immune Processes During Tumor Growth (in Russian). Moscow: Nauka.

    Google Scholar 

  • Kuznetsov, V. A., A. V. Inshina and Z. G. Kadagidze. 1988. Computer-aided determination of the number of active natural killers, their avidity and the rate of recycling in a lytic cycle.Soviet Immunology (Immunologiya) 5, 25–30.

    Google Scholar 

  • Kuznetsov, V. A. and M. V. Volkenshtein 1978. Mathematical model of cellular immune response to tumor growth (in Russian). InThe Reports at the Third All-Union Conference on Biology and Medical Cybernetics (Sukhumi), pp. 58–61. Moscow: USSR Academy of Science.

    Google Scholar 

  • Kuznetsov, V. A. and M. V. Volkenshtein. 1979. Dynamics of cellular immunological antitumor reactions. II. Qualitative analysis of the model (in Russian). InMathematical Methods of Systems Theory, pp. 72–100. Frunze: Kirghiz State University.

    Google Scholar 

  • Kuznetsov, V. A., V. P. Zhivoglyadov and L. A. Stepanova. 1993. Kinetic approach and estimation of parameters of cellular interaction between the immunity system and a tumor.Archiv. Immunol. Ther. Exp. 41, 21–32.

    Google Scholar 

  • Lefever, R. and T. Erneaux. 1984. On the growth of cellular tissues under constant and fluctuating environmental conditions. InNonlinear Electrodynamics in Biological Systems, P. Adley and A. F. Lowrence (Eds), pp. 287–305. New York and London: Plenum Press.

    Google Scholar 

  • Lefever, R., J. Hiernaux, J. Urbain and P. Meyers. 1992. On the kinetics and optimal specificity of cytotoxic reactions mediated by T-lymphocyte clones.Bull. math. Biol. 54, 839–873.

    Article  MATH  Google Scholar 

  • Liu, Ch.-M., Y. Suzuki, L. Chen, T. Okayasu, C. E. Calkins and E. F. Wheelock. 1990. Maintenance and cure of the L5178 murine tumor dormant state by interleukin-2:In vivo andin vitro effects.Cancer Res. 50, 1361–1367.

    Google Scholar 

  • Look, A. T., T. J. Schriber, J. F. Nawrocki and W. H. Murphy. 1981. Computer simulation of the cellular immune response to malignant lymphoid cells: Logic of approach, model design and laboratory verification.Immunol. 43, 677–690.

    Google Scholar 

  • Macken, C. A. and A. S. Perelson. 1984. A multistage model for the action of cytotoxic T lymphocytes in multicellular conjugates.J. Immunol. 132, 1614–1624.

    Google Scholar 

  • Mathe, G. and P. Rejzenstein. 1986. Managing minimal residual malignant disease.Oncology 43, 137–142.

    Article  Google Scholar 

  • Menta, B. C. and M. B. Agarwal. 1980. Cyclic oscillations in leukocyte count in chronic myeloid leukemia.Acta. Haematol. 63, 68–70.

    Google Scholar 

  • Merrill, S. J. 1982. Foundations of the use of enzyme kinetic analogy in cell-mediated cytotoxicity.Math. Biosci. 62, 219–236.

    Article  MATH  MathSciNet  Google Scholar 

  • Merrill, S. J. and S. Sathananthan. 1986. Approximate Michaelis-Menthen kinetics displayed in a stochastic model of cell-mediated cytotoxicity.Math. Biosci. 80, 223–238.

    Article  MATH  MathSciNet  Google Scholar 

  • Mohler, R. R. and K. S. Lee. 1989. Dynamic analysis and control of cancer. InInt. Conf. IEEE Engng Med. Biol. Seattle, pp. 1–2.

  • Nelson, D. S. and M. Nelson. 1987. Evasion of host defenses by tumors.Immunol. Cell. Biol. 65, 287–304.

    Google Scholar 

  • Old, L. J., E. A. Boyse, D. A. Clarke and F. A. Carswell. 1962. Antigenic properties of chemically induced tumors.Ann. N. Y. Acad. Sci. 101, 80–106.

    Google Scholar 

  • Perelson, A. S. and G. I. Bell. 1982. Delivery of lethal hits by cytotoxic T lymphocytes in multicellular conjugates occurs sequentially but at random.J. Immunol. 129, 2796–2801.

    Google Scholar 

  • Perelson, A. S. and C. A. Macken. 1984. Kinetics of cell-mediated cytotoxicity: Stochastic and deterministic multistage models.Math. Biosci. 170, 161–194.

    Article  MathSciNet  Google Scholar 

  • Prehn, R. T. 1972. The immune reaction as a stimulator of tumor growth.Science 4031, 170–171.

    Google Scholar 

  • Prehn, R. T. 1983. Review/commentary. The dose-response curve in tumor immunity.Int. J. Immunopharm. 5, 255–257.

    Article  Google Scholar 

  • Prigogine, I. and R. Lefever. 1980. Stability problems in cancer growth and nucleation.Comp. Biochem. Physiol. 67, 389–393.

    Article  Google Scholar 

  • Rescigno, A. and C. DeLisi. Immune surveillance and neoplasia. II. A two-stage mathematical model.Bull. math. Biol. 39, 487–497.

  • Reynolds, C. W., R. H. Wiltrout, S. Reichardi and R. B. Herberman. 1985. Measurements of thein vivo turnover rates of rat peripheral blood and spleen large granular lymphocytes.Natural Immun. Cell Growth Regul. 9, 272.

    Google Scholar 

  • Sampson, D., T. G. Peter, S. D. Lewis, J. Metzig and B. E. Murtz. 1977. Dose dependence of immunopotentiation and tumor regression induced by levamisole.Cancer Res. 37, 3526–3528.

    Google Scholar 

  • Siu, H., E. S. Vitetta, R. D. May and I. W. Uhr. 1986. Tumor dormancy. I. Regression of BCL1 tumor and induction of a dormant tumor state in mice chimeric at the major histocompatibility complex.J. Immunol. 137, 1376–1382.

    Google Scholar 

  • Slavin, S. and S. Strober. 1978. Spontaneous murine B-cell leukemia.Nature 272, 624–626.

    Article  Google Scholar 

  • Stewart, T. H. M. and E. F. Wheelock. 1992.Cellular Immune Mechanisms and Tumor Dormancy. Boca Raton, FL: CRC.

    Google Scholar 

  • Strober, S., E. S. Gronowicz, M. R. Knapp and S. Slavin. 1979. Immunobiology of a spontaneous murine B cell Leukemia (BCL).Immunol. Rev.,48, 169–195.

    Article  Google Scholar 

  • Swan, G. W. 1977.Some Current Mathematical Topics in Cancer Research. Ann Arbor, MI: University Microfilms International.

    Google Scholar 

  • Tanaka, K., T. Yoshioka, C. Bieberich and G. Jay. 1988. Role of the major histocompatibility complex class I antigens in tumor growth and metastasis.Ann. Rev. Immunol. 6, 359–380.

    Article  Google Scholar 

  • Thoma, J. A., G. J. Thoma and W. Clark. 1978. The efficiency and linearity of the radiochromium release assay for cell-mediated cytotoxicity.Cell Immunol 40, 404–418.

    Article  Google Scholar 

  • Thorn, R. M. and C. S. Henney. 1976. Kinetic analysis of target cell destruction by effector T cell.J. Immunol. 117, 2213–2219.

    Google Scholar 

  • Thorn, R. M. and C. S. Henney. 1977. Kinetic analysis of target cell destruction by effector cells. II. Changes in killer cell avidity as a function of time and dose.J. Immunol. 119, 1973–1978.

    Google Scholar 

  • Umiel, T. and N. Trainin. 1974. Immunological enhancement of tumor growth by syngeneic thymus-derived lymphocytes.Transplant 18, 244–250.

    Google Scholar 

  • Uhr, J. W., T. Tucker, R. D. May, H. Siu and E. S. Vitetta. 1991. Cancer dormancy: Studies of the murine BCL1 lymphoma.Cancer Res. (Suppl.) 51, 5045s-5053s.

    Google Scholar 

  • Uyttenhove, C., J. Maryanski and T. Boon. 1983. Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression.J. Expl Med. 157, 1040–1052.

    Article  Google Scholar 

  • Weinhold, K. J., L. T. Goldstein and E. F. Wheelock. 1979a. The tumor dormant state. Quantitation of L5178Y cells and host immune response during the establishment.J. Expl Med. 149, 732–744.

    Article  Google Scholar 

  • Weinhold, K. J., D. A. Miller and E. F. Wheelock. 1979b. The tumor dormant state. Comparison of L5178Y cells used to establish dormancy with those that emerge after its termination.J. Expl Med. 149, 745–747.

    Article  Google Scholar 

  • Weiss, L., S. Morecki, E. S. Vitetta and S. Slavin. 1983. Suppression and elimination of BCL1 leukemia by allogeneic bone marrow transplantation.J. Immunol. 130, 2452–2455.

    Google Scholar 

  • Wheelock, E. F. and M. K. Robinson. 1983. Biology of disease. Endogenous control of the neoplastic process.Lab. Investigation 48, 120–139.

    Google Scholar 

  • Wheelock, E. F., K. J. Weinhold and J. Levich. 1981. The tumor dormant state.Adv. Cancer Res. 34, 107–135.

    Article  Google Scholar 

  • Wiggins, S. 1990.Introduction to Applied Nonlinear Dynamical Systems and Chaos. New York, NY: Springer.

    MATH  Google Scholar 

  • Yefenof, E., L. J. Picker, R. H. Scheuermann, T. F. Tucker, E. S. Vitetta and J. W. Uhr. 1993. Cancer dormancy: Isolation and characterization of dormant lymphoma cells.Proc. Natl Acad. Sci. USA 90, 1829–1833.

    Article  Google Scholar 

  • Yermakova, A., P. Valko and S. Vajda. 1982. Direct intergral method via spline approximation for estimating rate constant.Appl. Catalysis 2, 139–154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A. et al. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bltn Mathcal Biology 56, 295–321 (1994). https://doi.org/10.1007/BF02460644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460644

Keywords

Navigation