Skip to main content

Advertisement

Log in

The effect of ionizing radiation on the homeostasis and functional integrity of murine splenic regulatory T cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Radiotherapy affects antitumor immune responses; therefore, it is important to study radiation effects on various compartments of the immune system. Here we report radiation effects on the homeostasis and function of regulatory T (Treg) cells, which are important in down-regulating antitumor immune responses.

Methods

C57Bl/6 mice were irradiated with 2 Gy and alterations in splenic lymphocyte fractions analyzed at different intervals.

Results

Total CD4+ numbers showed stronger decrease after irradiation than CD4+Foxp3+ Tregs. Tregs were less prone to radiation-induced apoptosis than CD4+Foxp3− T cells. The ratio of CD4+Foxp3− and CD4+Foxp3+ fractions within the proliferating CD4+ pool progressively changed from 74:26 in control animals to 59:41 eleven days after irradiation, demonstrating a more dynamic increase in the proliferation and regeneration of the Treg pool. The CD4+Foxp3+ fraction expressing cell-surface CTLA4, an antigen associated with Treg cell activation increased from 5.3 % in unirradiated mice to 10.5 % three days after irradiation. The expression of IL-10 mRNA was moderately upregulated, while TGF-β expression was not affected. On the other hand, irradiation reduced Treg capacity to suppress effector T cell proliferation by 2.5-fold.

Conclusion

Tregs are more radioresistant, less prone to radiation-induced apoptosis, and have faster repopulation kinetics than CD4+Foxp3− cells, but irradiated Tregs are functionally compromised, having a reduced suppressive capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol. 2009;10:718–26.

    Article  PubMed  Google Scholar 

  2. Reits EA, Hodge JW, Herberts CA, Groothuis TTA, Chakraborty M, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203:1259–71.

    Article  PubMed  CAS  Google Scholar 

  3. Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, et al. Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest. 2007;117:1305–13.

    Article  PubMed  CAS  Google Scholar 

  4. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.

    Article  PubMed  Google Scholar 

  5. Shiku H. Importance of CD4+ Helper T-cells in antitumor immunity. Int J Hematol. 2003;77:435–8.

    Article  PubMed  CAS  Google Scholar 

  6. Corthay A, Skovseth DK, Lundin KU, Rosjo E, Omholt H, et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity. 2005;22:371–83.

    Article  PubMed  CAS  Google Scholar 

  7. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, et al. The central role of CD4+ T cells in the antitumor immune response. J Exp Med. 1998;188:2357–68.

    Article  PubMed  CAS  Google Scholar 

  8. North RJ. Radiation-induced, immunologically mediated regression of an established tumor as an example of successful therapeutic immunomanipulation. Preferential elimination of suppressor T cells allows sustained production of effector T cells. J Exp Med. 1986;164:1652–66.

    Article  PubMed  CAS  Google Scholar 

  9. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. J Exp Med. 1985;161:72–87.

    Article  PubMed  CAS  Google Scholar 

  10. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, et al. Thymus and autoimmunity: production of CD4+CD25+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self tolerance. J Immunol. 1999;162:5317–26.

    PubMed  CAS  Google Scholar 

  11. Cvetanovich GL, Hafler DA. Human regulatory T cells in autoimmune diseases. Curr Opin Immunol. 2010;22:753–60.

    Article  PubMed  CAS  Google Scholar 

  12. Costantino CM, Baecher-Allan CM, Hafler DA. Human regulatory T cells and autoimmunity. Eur J Immunol. 2008;38:921–4.

    Article  PubMed  CAS  Google Scholar 

  13. Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol. 2003;3:199–210.

    Article  PubMed  CAS  Google Scholar 

  14. Wang HY, Wang RF. Regulatory T cells and cancer. Curr Opin Immunol. 2007;19:217–23.

    Article  PubMed  CAS  Google Scholar 

  15. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010;15:759–67.

    Google Scholar 

  16. Awwad M, North RJ. Sublethal, whole-body ionizing irradiation can be tumor promotive or tumor destructive depending on the stage of development of underlying antitumor immunity. Cancer Immunol Immunother. 1988;26:55–60.

    Article  PubMed  CAS  Google Scholar 

  17. Dunn PL, North RJ. Selective radiation resistance of immunologically induced T cells as the basis for irradiation-induced T-cell-mediated regression of immunogenic tumor. J Leukoc Biol. 1991;49:388–96.

    PubMed  CAS  Google Scholar 

  18. Nisco SJ, Hissink RJ, Vriens PW, Hoyt EG, Reitz BA, et al. In vivo studies of the maintenance of peripheral transplant tolerance after cyclosporine. Radiosensitive antigen-specific suppressor cells mediate lasting graft protection against primed effector cells. Transplantation. 1995;59:1444–52.

    Article  PubMed  CAS  Google Scholar 

  19. Cao M, Cabrera R, Xu Y, Liu C, Nelson D. Different radiosensitivity of CD4+CD25+ regulatory T cells and effector T cells to low dose gamma irradiation in vitro. Int J Radiat Biol. 2011;87:71–80.

    Article  PubMed  CAS  Google Scholar 

  20. Komatsu N, Hori S. Full restoration of peripheral Foxp3 regulatory T cell pool by radioresistant host cells in scurfy bone marrow chimeras. PNAS. 2007;104:8959–64.

    Article  PubMed  CAS  Google Scholar 

  21. Qu Y, Jin S, Zhang A, Zhang B, Shi X, et al. Gamma-ray resistance of regulatory CD4+CD25+Foxp3+ T cells in mice. Radiat Res. 2010;173:148–57.

    Article  PubMed  CAS  Google Scholar 

  22. Qu Y, Zhang B, Liu S, Zhang A, Wu T, et al. 2-Gy whole-body irradiation significantly alters the balance of CD4+CD25- T effector cells and CD4+CD25+Foxp3+ T regulatory cells in mice. Cell Mol Immunol. 2010;7:419–27.

    Article  PubMed  CAS  Google Scholar 

  23. Bogdándi EN, Balogh A, Felgyinszki N, Szatmári T, Persa E, et al. Effects of low-dose radiation on the immune system of mice after total-body irradiation. Radiat Res. 2010;174:480–9.

    Article  PubMed  Google Scholar 

  24. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192:303–10.

    Article  PubMed  CAS  Google Scholar 

  25. Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, et al. GARP (LRRC32) is essential for the surface expression of latent TGF-b on platelets and activated FOXP3+ regulatory T cells. PNAS. 2009;106:13445–50.

    Article  PubMed  CAS  Google Scholar 

  26. Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, et al. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. PNAS. 2009;106:13439–44.

    PubMed  CAS  Google Scholar 

  27. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181:3099–107.

    PubMed  CAS  Google Scholar 

  28. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174:7516–23.

    PubMed  CAS  Google Scholar 

  29. Timke C, Winnenthal HS, Klug F, Roeder FF, Bonertz A, et al. Randomized controlled phase I/II study to investigate immune stimulatory effects by low dose radiotherapy in primarily operable pancreatic cancer. BMC Cancer. 2011;11:134.

    Article  PubMed  Google Scholar 

  30. Tatsuta K, Tanaka S, Tajiri T, Shibata S, Komaru A, et al. Complete elimination of established neuroblastoma by synergistic action of gamma-irradiation and DCs treated with rSeV expressing interferon-beta gene. Gene Ther. 2009;16:240–51.

    Article  PubMed  CAS  Google Scholar 

  31. Wang YS, Tsang YW, Chi CH, Chang CC, Chu RM, et al. Synergistic anti-tumor effect of combination radio- and immunotherapy by electro-gene therapy plus intra-tumor injection of dendritic cells. Cancer Lett. 2008;266:275–85.

    Article  PubMed  CAS  Google Scholar 

  32. Teitz-Tennenbaum S, Li Q, Rynkiewicz S, Ito F, Davis MA, et al. Radiotherapy potentiates the therapeutic efficacy of intratumoral dendritic cell administration. Cancer Res. 2003;63:8466–75.

    PubMed  CAS  Google Scholar 

  33. Safwat A, Aggerholm N, Roitt I, Overgaard J, Hokland M. Low-dose total body irradiation augments the therapeutic effect of interleukin-2 in a mouse model for metastatic malignant melanoma. J Exp Ther Oncol. 2003;3:161–8.

    Article  PubMed  CAS  Google Scholar 

  34. Lumniczky K, Désaknai S, Mangel L, Szende B, Hamada H, et al. Local tumor irradiation augments the anti-tumor effect of cytokine producing autologous cancer cell vaccines in a murine glioma model. Cancer Gene Ther. 2002;9:44–52.

    Article  PubMed  CAS  Google Scholar 

  35. Lee WC, Wu TJ, Chou HS, Yu MC, Hsu PY, et al. The impact of CD4+CD25+ T cells in the tumor microenvironment of hepatocellular carcinoma. Surgery. 2012;151:213–22.

    Article  PubMed  Google Scholar 

  36. Yamagami W, Susumu N, Tanaka H, Hirasawa A, Banno K, et al. Immunofluorescence-detected infiltration of CD4+FOXP3+ regulatory T cells is relevant to the prognosis of patients with endometrial cancer. Int J Gynecol Cancer. 2011;21:1628–34.

    Article  PubMed  Google Scholar 

  37. Winerdal ME, Marits P, Winerdal M, Hasan M, Rosenblatt R, et al. FOXP3 and survival in urinary bladder cancer. BJU Int. 2011;108:1672–8.

    Article  PubMed  CAS  Google Scholar 

  38. Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, et al. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer. 2012;75:95–101.

    Article  PubMed  Google Scholar 

  39. Knol AC, Nguyen JM, Quéreux G, Brocard A, Khammari A, et al. Prognostic value of tumor-infiltrating Foxp3+ T-cell subpopulations in metastatic melanoma. Exp Dermatol. 2011;20:430–4.

    Article  PubMed  Google Scholar 

  40. Agarwalla P, Barnard Z, Fecci P, Dranoff G, Curry WT Jr. Sequential immunotherapy by vaccination With GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J Immunother. 2012;35:385–9.

    Article  PubMed  CAS  Google Scholar 

  41. Sundstedt A, Celander M, Eriksson H, Törngren M, Hedlund G. Monotherapeutically nonactive CTLA-4 blockade results in greatly enhanced antitumor Effects when combined with tumor-targeted superantigens in a B16 melanoma model. J Immunother. 2012;35:344–53.

    Article  PubMed  CAS  Google Scholar 

  42. Curran MA, Kim M, Montalvo W, Al-Shamkhani A, Allison JP. Combination CTLA-4 blockade and 4–1BB activation enhances tumor rejection by increasing T-cell infiltration, proliferation, and cytokine production. PLoS ONE. 2011;6:e19499.

    Article  PubMed  CAS  Google Scholar 

  43. Calabrò L, Danielli R, Sigalotti L, Maio M. Clinical studies with anti-CTLA-4 antibodies in non-melanoma indications. Semin Oncol. 2010;37:460–7.

    Article  PubMed  Google Scholar 

  44. Scheier B, Amaria R, Lewis K, Gonzalez R. Novel therapies in melanoma. Immunotherapy. 2011;3:1461–9.

    Article  PubMed  CAS  Google Scholar 

  45. Fong L, Kwek SS, O’Brien S, Kavanagh B, McNeel DG, et al. Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res. 2009;69:609–15.

    Article  PubMed  CAS  Google Scholar 

  46. Bayer AL, Jones M, Chirinos J, de Armas L, Schreiber TH, et al. Host CD4+CD25+ T cells can expand and comprise a major component of the Treg compartment after experimental HCT. Blood. 2009;113:733–43.

    Article  PubMed  CAS  Google Scholar 

  47. Gridley DS, Luo-Owen X, Rizvi A, Makinde AY, Pecaut MJ, et al. Low-dose photon and simulated solar particle event proton effects on Foxp3+ T regulatory cells and other leukocytes. Technol Cancer Res Treat. 2010;9:637–49.

    PubMed  Google Scholar 

  48. Lemon JA, Rollo CD, McFarlane NM, Boreham DR. Radiation-induced apoptosis in mouse lymphocytes is modified by a complex dietary supplement: the effect of genotype and gender. Mutagenesis. 2008;23:465–72.

    Article  PubMed  CAS  Google Scholar 

  49. Cui YF, Gao YB, Yang H, Xiong CQ, Xia GW, et al. Apoptosis of circulating lymphocytes induced by whole body gamma-irradiation and its mechanism. J Environ Pathol Toxicol Oncol. 1999;18:185–9.

    PubMed  CAS  Google Scholar 

  50. Mohamood AS, Trujillo CJ, Zheng D, Jie C, Murillo FM, et al. Gld mutation of Fas ligand increases the frequency and up-regulates cell survival genes in CD251CD41 TR cells. Int Immunol. 2006;18:1265–77.

    Article  PubMed  CAS  Google Scholar 

  51. Fritzsching B, Oberle N, Eberhardt N, Quick S, Haas J, et al. In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J. Immunol. 2005;175(32–36):52.

    Google Scholar 

  52. Fujimori Y, Saheki K, Itoi H, Okamamoto T, Kakishita E. Increased expression of Fas (APO-1, CD95) on CD4+ and CD8+ T lymphocytes during total body irradiation. Acta Haematol. 2000;104:193–6.

    Article  PubMed  CAS  Google Scholar 

  53. Curotto de Lafaille MA, Lino AC, Kutchukhidze N, Lafaille JJ. CD25− T cells generate CD25+Foxp3+ regulatory T Cells by peripheral expansion. J Immunol. 2004;173:7259–68.

    PubMed  CAS  Google Scholar 

  54. Haribhai M, Lin W, Edwards B, Ziegelbauer J, Salzman NH, et al. A central role for induced regulatory T cells in tolerance induction in experimental colitis. J Immunol. 2009;182:3461–8.

    Article  PubMed  CAS  Google Scholar 

  55. Suffner J, Hochweller K, Kühnle MC, Li X, Kroczek RA, et al. Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice. J Immunol. 2010;184:1810–20.

    Article  PubMed  CAS  Google Scholar 

  56. Amundson SA, Do KT, Shahab S, Bittner M, Meltzer P, et al. Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat Res. 2000;154:342–6.

    Article  PubMed  CAS  Google Scholar 

  57. Han SK, Song JY, Yun YS, Yi SY. Gamma irradiation-reduced IFN-gamma expression, STAT1 signals, and cell-mediated immunity. J Biochem Mol Biol. 2002;35:583–9.

    Article  PubMed  CAS  Google Scholar 

  58. Gridley DS, Dutta-Roy R, Andres ML, Nelson GA, Pecaut MJ. Acute effects of iron-particle radiation on immunity. Part II: Leukocyte activation, cytokines and adhesion. Radiat Res. 2006;165:78–87.

    Article  PubMed  CAS  Google Scholar 

  59. Dummer CD, Carpio VN, Gonçalves LF, Manfro RC, Veronese FV. FOXP3+ regulatory T cells: from suppression of rejection to induction of renal allograft tolerance. Transpl Immunol. 2012;26:1–10.

    Article  PubMed  CAS  Google Scholar 

  60. Askenasy N, Kaminitz A, Yarkoni S. Mechanisms of T regulatory cell function. Autoimmun Rev. 2008;7:370–5.

    Article  PubMed  CAS  Google Scholar 

  61. Billiard F, Buard V, Benderitter M, Linard C. Abdominal γ-radiation induces an accumulation of function-impaired regulatory T cells in the small intestine. Int J Radiat Oncol Biol Phys. 2011;80:869–76.

    Article  PubMed  CAS  Google Scholar 

  62. Oida T, Weiner HL. TGF-beta induces surface LAP expression on murine CD4 T cells independent of Foxp3 induction. PLoS ONE. 2010;5:15523.

    Article  Google Scholar 

  63. Wing K, Fehervari Z, Sakaguchi S. Emerging possibilities in the development and function of regulatory T cells. Int Immunol. 2006;18:991–1000.

    Article  PubMed  CAS  Google Scholar 

  64. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322:271–5.

    Article  PubMed  CAS  Google Scholar 

  65. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295–302.

    Article  PubMed  CAS  Google Scholar 

  66. Cao M, Cabrera R, Xu Y, Liu C, Nelson D. Gamma irradiation alters the phenotype and function of CD4+CD25+ regulatory T cells. Cell Biol Int. 2009;33:565–71.

    Article  PubMed  CAS  Google Scholar 

  67. Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol. 2012;3:51.

    PubMed  Google Scholar 

  68. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J Immunol. 2001;167:1245–53.

    PubMed  CAS  Google Scholar 

  69. Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naïve and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med. 2001;193:1295–302.

    Article  PubMed  CAS  Google Scholar 

  70. Schmidt A, Oberle N, Weiß EM, Vobis D, Frischbutter S, et al. Human regulatory T cells rapidly suppress T cell receptor-induced Ca2+, NF-kB, and NFAT signaling in conventional T cells. Sci Signal. 2011;4:ra90.

    Article  PubMed  CAS  Google Scholar 

  71. Birebent B, Lorho R, Lechartier H, de Guibert S, Alizadeh M, et al. Suppressive properties of human CD4+CD25+ regulatory T cells are dependent on CTLA4 expression. Eur J Immunol. 2004;34:3485–96.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Serge Candeias for the careful reading of the manuscript and for helpful suggestions in manuscript writing. The authors thank the expert technical assistance of Ms. Erzsébet Fekete. This work was supported by the following grants: European Union FP6-036465/2006 (NOTE), European Union FP7- CEREBRAD-295552/2011 and Hungarian OTKA (Hungarian Scientific Research Fund) K77766 and ETT (Medical Research Council) 827-1/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Lumniczky.

Additional information

Responsible Editor: Andras Falus.

A. Balogh and E. Persa contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balogh, A., Persa, E., Bogdándi, E.N. et al. The effect of ionizing radiation on the homeostasis and functional integrity of murine splenic regulatory T cells. Inflamm. Res. 62, 201–212 (2013). https://doi.org/10.1007/s00011-012-0567-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0567-y

Keywords

Navigation