Skip to main content

Advertisement

Log in

Inhibition of human Vγ9Vδ2 T-cell antitumoral activity through HLA-G: implications for immunotherapy of cancer

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 08 June 2011

Abstract

Vγ9Vδ2 T cells play a crucial role in the antitumoral immune response through cytokine production and cytotoxicity. Although the expression of the immunomodulatory molecule HLA-G has been found in diverse tumors, its impact on Vγ9Vδ2 T-cell functions remains unknown. Here we showed that soluble HLA-G inhibits Vγ9Vδ2 T-cell proliferation without inducing apoptosis. Moreover, soluble HLA-G inhibited the Vγ9Vδ2 T-cell production of IFN-γ induced by phosphoantigen stimulation. The reduction in Vγ9Vδ2 T-cell IFN-γ production was also induced by membrane-bound or soluble HLA-G expressed by tumor cell lines. Finally, primary tumor cells inhibited Vγ9Vδ2 T-cell proliferation and IFN-γ production through HLA-G. In this context, HLA-G impaired Vγ9Vδ2 T-cell cytotoxicity by interacting with ILT2 inhibitory receptor. These data demonstrate that HLA-G inhibits the anti-tumoral functions of Vγ9Vδ2 T cells and imply that treatments targeting HLA-G could optimize Vγ9Vδ2 T-cell-mediated immunotherapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hayday AC (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    Article  PubMed  CAS  Google Scholar 

  2. Hayday AC (2009) Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31:184–196

    Article  PubMed  CAS  Google Scholar 

  3. Thedrez A, Sabourin C, Gertner J, Devilder MC, Allain-Maillet S, Fournie JJ, Scotet E, Bonneville M (2007) Self/non-self discrimination by human gammadelta T cells: simple solutions for a complex issue? Immunol Rev 215:123–135

    Article  PubMed  CAS  Google Scholar 

  4. Nedellec S, Bonneville M, Scotet E (2010) Human Vgamma9Vdelta2 T cells: from signals to functions. Semin Immunol 22:199–206

    Article  PubMed  CAS  Google Scholar 

  5. Girlanda S, Fortis C, Belloni D, Ferrero E, Ticozzi P, Sciorati C, Tresoldi M, Vicari A, Spies T, Groh V, Caligaris-Cappio F, Ferrarini M (2005) MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells costimulates pamidronate-activated gammadelta lymphocytes. Cancer Res 65:7502–7508

    Article  PubMed  CAS  Google Scholar 

  6. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T (2005) Activation of V gamma 9V delta 2 T cells by NKG2D. J Immunol 175:2144–2151

    PubMed  CAS  Google Scholar 

  7. Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F, Arcara C, Valerio MR, Meraviglia S, Di Sano C, Sireci G, Salerno A (2003) Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 102:2310–2311

    Article  PubMed  CAS  Google Scholar 

  8. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, Tony HP (2003) Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 102:200–206

    Article  PubMed  CAS  Google Scholar 

  9. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, Roberts A, Buccheri S, D’Asaro M, Gebbia N, Salerno A, Eberl M, Hayday AC (2007) Targeting human {gamma}{delta} T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67:7450–7457

    Article  PubMed  CAS  Google Scholar 

  10. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476

    Article  PubMed  CAS  Google Scholar 

  11. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C, Salot S, Saiagh S, Audrain M, Rimbert M, Lafaye-de Micheaux S, Tiollier J, Negrier S (2008) Phase-I study of Innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57:1599–1609

    Article  PubMed  CAS  Google Scholar 

  12. Abe Y, Muto M, Nieda M, Nakagawa Y, Nicol A, Kaneko T, Goto S, Yokokawa K, Suzuki K (2009) Clinical and immunological evaluation of zoledronate-activated Vgamma9gammadelta T-cell-based immunotherapy for patients with multiple myeloma. Exp Hematol 37:956–968

    Article  PubMed  CAS  Google Scholar 

  13. Martinet L, Poupot R, Fournie JJ (2009) Pitfalls on the roadmap to gammadelta T cell-based cancer immunotherapies. Immunol Lett 124:1–8

    Article  PubMed  CAS  Google Scholar 

  14. Rouas-Freiss N, Moreau P, Menier C, LeMaoult J, Carosella ED (2007) Expression of tolerogenic HLA-G molecules in cancer prevents antitumor responses. Semin Cancer Biol 17:413–421

    Article  PubMed  CAS  Google Scholar 

  15. Amiot L, Ferrone S, Grosse-Wilde H, Seliger B (2011) Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention? Cell Mol Life Sci 68:417–431

    Article  PubMed  CAS  Google Scholar 

  16. Carosella ED, Gregori S, Rouas-Freiss N, Lemaoult J, Menier C, Favier B (2011) The role of HLA-G in immunity and hematopoiesis. Cell Mol Life Sci 68:353–368

    Article  PubMed  CAS  Google Scholar 

  17. de Kruijf EM, Sajet A, van Nes JG, Natanov R, Putter H, Smit VT, Liefers GJ, van den Elsen PJ, van de Velde CJ, Kuppen PJ (2010) HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol 185:7452–7459

    Article  PubMed  Google Scholar 

  18. Favier B, LeMaoult J, Rouas-Freiss N, Moreau P, Menier C, Carosella ED (2007) Research on HLA-G: an update. Tissue Antigens 69:207–211

    Article  PubMed  CAS  Google Scholar 

  19. Carosella ED, Favier B, Rouas-Freiss N, Moreau P, Lemaoult J (2008) Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood 111:4862–4870

    Article  PubMed  CAS  Google Scholar 

  20. Carosella ED, Moreau P, Lemaoult J, Rouas-Freiss N (2008) HLA-G: from biology to clinical benefits. Trends Immunol 29:125–132

    Article  PubMed  CAS  Google Scholar 

  21. Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED (1997) The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci U S A 94:5249–5254

    Article  PubMed  CAS  Google Scholar 

  22. Le Gal FA, Riteau B, Sedlik C, Khalil-Daher I, Menier C, Dausset J, Guillet JG, Carosella ED, Rouas-Freiss N (1999) HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol 11:1351–1356

    Article  PubMed  CAS  Google Scholar 

  23. Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED (2001) HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol 166:5018–5026

    PubMed  CAS  Google Scholar 

  24. Sicard H, Ingoure S, Luciani B, Serraz C, Fournie JJ, Bonneville M, Tiollier J, Romagne F (2005) In vivo immunomanipulation of V gamma 9V delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 175:5471–5480

    PubMed  CAS  Google Scholar 

  25. Rouas-Freiss N, Bruel S, Menier C, Marcou C, Moreau P, Carosella ED (2005) Switch of HLA-G alternative splicing in a melanoma cell line causes loss of HLA-G1 expression and sensitivity to NK lysis. Int J Cancer 117:114–122

    Article  PubMed  CAS  Google Scholar 

  26. Le Rond S, Azema C, Krawice-Radanne I, Durrbach A, Guettier C, Carosella ED, Rouas-Freiss N (2006) Evidence to support the role of HLA-G5 in allograft acceptance through induction of immunosuppressive/regulatory T cells. J Immunol 176:3266–3276

    PubMed  CAS  Google Scholar 

  27. Trichet V, Benezech C, Dousset C, Gesnel MC, Bonneville M, Breathnach R (2006) Complex interplay of activating and inhibitory signals received by Vgamma9Vdelta2 T cells revealed by target cell beta2-microglobulin knockdown. J Immunol 177:6129–6136

    PubMed  CAS  Google Scholar 

  28. Thedrez A, Harly C, Morice A, Salot S, Bonneville M, Scotet E (2009) IL-21-mediated potentiation of antitumor cytolytic and proinflammatory responses of human V gamma 9V delta 2 T cells for adoptive immunotherapy. J Immunol 182:3423–3431

    Article  PubMed  CAS  Google Scholar 

  29. Lila N, Rouas-Freiss N, Dausset J, Carpentier A, Carosella ED (2001) Soluble HLA-G protein secreted by allo-specific CD4+ T cells suppresses the allo-proliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci USA 98:12150–12155

    Article  PubMed  CAS  Google Scholar 

  30. Bahri R, Hirsch F, Josse A, Rouas-Freiss N, Bidere N, Vasquez A, Carosella ED, Charpentier B, Durrbach A (2006) Soluble HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes. J Immunol 176:1331–1339

    PubMed  CAS  Google Scholar 

  31. Gonen-Gross T, Achdout H, Gazit R, Hanna J, Mizrahi S, Markel G, Goldman-Wohl D, Yagel S, Horejsi V, Levy O, Baniyash M, Mandelboim O (2003) Complexes of HLA-G protein on the cell surface are important for leukocyte Ig-like receptor-1 function. J Immunol 171:1343–1351

    PubMed  CAS  Google Scholar 

  32. Ristich V, Liang S, Zhang W, Wu J, Horuzsko A (2005) Tolerization of dendritic cells by HLA-G. Eur J Immunol 35:1133–1142

    Article  PubMed  CAS  Google Scholar 

  33. Ristich V, Zhang W, Liang S, Horuzsko A (2007) Mechanisms of prolongation of allograft survival by HLA-G/ILT4-modified dendritic cells. Hum Immunol 68:264–271

    Article  PubMed  CAS  Google Scholar 

  34. Apps R, Gardner L, Sharkey AM, Holmes N, Moffett A (2007) A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur J Immunol 37:1924–1937

    Article  PubMed  CAS  Google Scholar 

  35. Solier C, Aguerre-Girr M, Lenfant F, Campan A, Berrebi A, Rebmann V, Grosse-Wilde H, Le Bouteiller P (2002) Secretion of pro-apoptotic intron 4-retaining soluble HLA-G1 by human villous trophoblast. Eur J Immunol 32:3576–3586

    Article  PubMed  CAS  Google Scholar 

  36. Contini P, Ghio M, Poggi A, Filaci G, Indiveri F, Ferrone S, Puppo F (2003) Soluble HLA-A, -B, -C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol 33:125–134

    Article  PubMed  CAS  Google Scholar 

  37. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  PubMed  CAS  Google Scholar 

  38. Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345

    Article  PubMed  CAS  Google Scholar 

  39. Takamatsu HH, Kirkham PA, Parkhouse RM (1997) A gamma delta T cell specific surface receptor (WC1) signaling G0/G1 cell cycle arrest. Eur J Immunol 27:105–110

    Article  PubMed  CAS  Google Scholar 

  40. Kirkham PA, Takamatsu HH, Parkhouse RM (1997) Growth arrest of gammadelta T cells induced by monoclonal antibody against WC1 correlates with activation of multiple tyrosine phosphatases and dephosphorylation of MAP kinase erk2. Eur J Immunol 27:717–725

    Article  PubMed  CAS  Google Scholar 

  41. Kirkham PA, Lam EW, Takamatsu HH, Parkhouse RM (1998) Transcription factor E2F controls the reversible gamma delta T cell growth arrest mediated through WC1. J Immunol 161:1630–1636

    PubMed  CAS  Google Scholar 

  42. Scotet E, Nedellec S, Devilder MC, Allain S, Bonneville M (2008) Bridging innate and adaptive immunity through gammadelta T-dendritic cell crosstalk. Front Biosci 13:6872–6885

    Article  PubMed  CAS  Google Scholar 

  43. Morel E, Bellon T (2008) HLA class I molecules regulate IFN-gamma production induced in NK cells by target cells, viral products, or immature dendritic cells through the inhibitory receptor ILT2/CD85j. J Immunol 181:2368–2381

    PubMed  CAS  Google Scholar 

  44. Favier B, Lemaoult J, Lesport E, Carosella ED (2010) ILT2/HLA-G interaction impairs NK-cell functions through the inhibition of the late but not the early events of the NK-cell activating synapse. FASEB J 24:689–699

    Article  PubMed  CAS  Google Scholar 

  45. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168

    Article  PubMed  CAS  Google Scholar 

  46. Halary F, Peyrat MA, Champagne E, Lopez-Botet M, Moretta A, Moretta L, Vie H, Fournie JJ, Bonneville M (1997) Control of self-reactive cytotoxic T lymphocytes expressing gamma delta T cell receptors by natural killer inhibitory receptors. Eur J Immunol 27:2812–2821

    Article  PubMed  CAS  Google Scholar 

  47. Fisch P, Meuer E, Pende D, Rothenfusser S, Viale O, Kock S, Ferrone S, Fradelizi D, Klein G, Moretta L, Rammensee HG, Boon T, Coulie P, van der Bruggen P (1997) Control of B cell lymphoma recognition via natural killer inhibitory receptors implies a role for human Vgamma9/Vdelta2 T cells in tumor immunity. Eur J Immunol 27:3368–3379

    Article  PubMed  CAS  Google Scholar 

  48. Poccia F, Cipriani B, Vendetti S, Colizzi V, Poquet Y, Battistini L, Lopez-Botet M, Fournie JJ, Gougeon ML (1997) CD94/NKG2 inhibitory receptor complex modulates both anti-viral and anti-tumoral responses of polyclonal phosphoantigen-reactive V gamma 9V delta 2 T lymphocytes. J Immunol 159:6009–6017

    PubMed  CAS  Google Scholar 

  49. Shiroishi M, Tsumoto K, Amano K, Shirakihara Y, Colonna M, Braud VM, Allan DS, Makadzange A, Rowland-Jones S, Willcox B, Jones EY, van der Merwe PA, Kumagai I, Maenaka K (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci U S A 100:8856–8861

    Article  PubMed  CAS  Google Scholar 

  50. Anfossi N, Doisne JM, Peyrat MA, Ugolini S, Bonnaud O, Bossy D, Pitard V, Merville P, Moreau JF, Delfraissy JF, Dechanet-Merville J, Bonneville M, Venet A, Vivier E (2004) Coordinated expression of Ig-like inhibitory MHC class I receptors and acquisition of cytotoxic function in human CD8+ T cells. J Immunol 173:7223–7229

    PubMed  CAS  Google Scholar 

  51. Ince MN, Harnisch B, Xu Z, Lee SK, Lange C, Moretta L, Lederman M, Lieberman J (2004) Increased expression of the natural killer cell inhibitory receptor CD85j/ILT2 on antigen-specific effector CD8 T cells and its impact on CD8 T-cell function. Immunology 112:531–542

    Article  PubMed  CAS  Google Scholar 

  52. Li BL, Lin A, Zhang XJ, Zhang X, Zhang JG, Wang Q, Zhou WJ, Chen HX, Wang TJ, Yan WH (2009) Characterization of HLA-G expression in renal cell carcinoma. Tissue Antigens 74:213–221

    Article  PubMed  CAS  Google Scholar 

  53. Singer G, Rebmann V, Chen YC, Liu HT, Ali SZ, Reinsberg J, McMaster MT, Pfeiffer K, Chan DW, Wardelmann E, Grosse-Wilde H, Cheng CC, Kurman RJ, Shih Ie M (2003) HLA-G is a potential tumor marker in malignant ascites. Clin Cancer Res 9:4460–4464

    PubMed  CAS  Google Scholar 

  54. Sebti Y, Le Friec G, Pangault C, Gros F, Drenou B, Guilloux V, Bernard M, Lamy T, Fauchet R, Amiot L (2003) Soluble HLA-G molecules are increased in lymphoproliferative disorders. Hum Immunol 64:1093–1101

    Article  PubMed  CAS  Google Scholar 

  55. Yao AY, Tang HY, Wang Y, Feng MF, Zhou RL (2004) Inhibition of the activating signals in NK92 cells by recombinant GST-sHLA-G1a chain. Cell Res 14:155–160

    Article  PubMed  CAS  Google Scholar 

  56. Roussev RG, Ng SC, Coulam CB (2007) Natural killer cell functional activity suppression by intravenous immunoglobulin, intralipid and soluble human leukocyte antigen-G. Am J Reprod Immunol 57:262–269

    Article  PubMed  CAS  Google Scholar 

  57. Lesport E, Baudhuin J, LeMaoult J, Sousa S, Doliger C, Carosella ED, Favier B (2009) Human melanoma cell secreting human leukocyte antigen-G5 inhibit natural killer cell cytotoxicity by impairing lytic granules polarization toward target cell. Hum Immunol 70:1000–1005

    Article  PubMed  CAS  Google Scholar 

  58. Park GM, Lee S, Park B, Kim E, Shin J, Cho K, Ahn K (2004) Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochem Biophys Res Commun 313:606–611

    Article  PubMed  CAS  Google Scholar 

  59. Menier C, Riteau B, Carosella ED, Rouas-Freiss N (2002) MICA triggering signal for NK cell tumor lysis is counteracted by HLA-G1-mediated inhibitory signal. Int J Cancer 100:63–70

    Article  PubMed  CAS  Google Scholar 

  60. Favier B, Espinosa E, Tabiasco J, Dos Santos C, Bonneville M, Valitutti S, Fournie JJ (2003) Uncoupling between immunological synapse formation and functional outcome in human gamma delta T lymphocytes. J Immunol 171:5027–5033

    PubMed  CAS  Google Scholar 

  61. Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67:5–8

    Article  PubMed  CAS  Google Scholar 

  62. Bonneville M, Scotet E (2006) Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 18:539–546

    Article  PubMed  CAS  Google Scholar 

  63. Urosevic M, Willers J, Mueller B, Kempf W, Burg G, Dummer R (2002) HLA-G protein up-regulation in primary cutaneous lymphomas is associated with interleukin-10 expression in large cell T-cell lymphomas and indolent B-cell lymphomas. Blood 99:609–617

    Article  PubMed  CAS  Google Scholar 

  64. Rebmann V, Nuckel H, Duhrsen U, Grosse-Wilde H (2007) HLA-G in B-chronic lymphocytic leukaemia: clinical relevance and functional implications. Semin Cancer Biol 17:430–435

    Article  PubMed  CAS  Google Scholar 

  65. Dunker K, Schlaf G, Bukur J, Altermann WW, Handke D, Seliger B (2008) Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens 72:137–148

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commissariat à l’Energie Atomique (CEA). J.B. is supported by an IRTELIS fellowship from CEA. We thank Helene Sicard (Innate Pharma, Marseille, France) for kindly providing BrHPP, and Niclas Setterblad and the Service Commun d’Imagerie Cellulaire et Moleculaire for their help. We also thank Nuala Mooney for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Favier.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00018-011-0742-2

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesport, E., Baudhuin, J., Sousa, S. et al. Inhibition of human Vγ9Vδ2 T-cell antitumoral activity through HLA-G: implications for immunotherapy of cancer. Cell. Mol. Life Sci. 68, 3385–3399 (2011). https://doi.org/10.1007/s00018-011-0632-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0632-7

Keywords

Navigation