Skip to main content
Log in

Biology and applications of small nucleolar RNAs

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Small nucleolar RNAs (snoRNAs) constitute a group of non-coding RNAs principally involved in posttranscriptional modification of ubiquitously expressed ribosomal and small nuclear RNAs. However, a number of tissue-specific snoRNAs have recently been identified that apparently do not target conventional substrates and are presumed to guide processing of primary transcripts of protein-coding genes, potentially expanding the diapason of regulatory RNAs that control translation of mRNA to proteins. Here, we review biogenesis of snoRNAs and redefine their function in light of recent exciting discoveries. We also discuss the potential of recombinant snoRNAs to be used in modulation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:230–232

    Article  PubMed  CAS  Google Scholar 

  2. Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M, Beach C, Nicholls RD, Zavolan M, Stamm S (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19:1153–1164

    Article  PubMed  CAS  Google Scholar 

  3. Vitali P, Basyuk E, Le Meur E, Bertrand E, Muscatelli F, Cavaille J, Huttenhofer A (2005) ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 169:745–753

    Article  PubMed  CAS  Google Scholar 

  4. Yang JH, Zhang XC, Huang ZP, Zhou H, Huang MB, Zhang S, Chen YQ, Qu LH (2006) snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome. Nucleic Acids Res 34:5112–5123

    Article  PubMed  CAS  Google Scholar 

  5. Omer AD, Lowe TM, Russell AG, Ebhardt H, Eddy SR, Dennis PP (2000) Homologs of small nucleolar RNAs in Archaea. Science 288:517–522

    Article  PubMed  CAS  Google Scholar 

  6. Gaspin C, Cavaille J, Erauso G, Bachellerie JP (2000) Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol 297:895–906

    Article  PubMed  CAS  Google Scholar 

  7. Dieci G, Preti M, Montanini B (2009) Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94:83–88

    Article  PubMed  CAS  Google Scholar 

  8. Tycowski KT, Steitz JA (2001) Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur J Cell Biol 80:119–125

    Article  PubMed  CAS  Google Scholar 

  9. Richard P, Darzacq X, Bertrand E, Jady BE, Verheggen C, Kiss T (2003) A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. EMBO J 22:4283–4293

    Article  PubMed  CAS  Google Scholar 

  10. Reichow SL, Hamma T, Ferre-D’Amare AR, Varani G (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452–1464

    Article  PubMed  CAS  Google Scholar 

  11. Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, Ospina JK, Kiss T, Matera AG, Bordonne R, Bertrand E (2004) PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell 16:777–787

    Article  PubMed  CAS  Google Scholar 

  12. Pradet-Balade B, Girard C, Boulon S, Paul C, Azzag K, Bordonne R, Bertrand E, Verheggen C (2011) CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport. EMBO J 30:2205–2218

    Google Scholar 

  13. Gonzales FA, Zanchin NI, Luz JS, Oliveira CC (2005) Characterization of Saccharomyces cerevisiae Nop17p, a novel Nop58p-interacting protein that is involved in Pre-rRNA processing. J Mol Biol 346:437–455

    Article  PubMed  CAS  Google Scholar 

  14. McKeegan KS, Debieux CM, Boulon S, Bertrand E, Watkins NJ (2007) A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol Cell Biol 27:6782–6793

    Article  PubMed  CAS  Google Scholar 

  15. Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jady BE, Rothe B, Pescia C, Robert MC, Kiss T, Bardoni B, Krol A, Branlant C, Allmang C, Bertrand E, Charpentier B (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 180:579–595

    Article  PubMed  CAS  Google Scholar 

  16. Darzacq X, Kittur N, Roy S, Shav-Tal Y, Singer RH, Meier UT (2006) Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J Cell Biol 173:207–218

    Article  PubMed  CAS  Google Scholar 

  17. Godin KS, Walbott H, Leulliot N, van Tilbeurgh H, Varani G (2009) The box H/ACA snoRNP assembly factor Shq1p is a chaperone protein homologous to Hsp90 cochaperones that binds to the Cbf5p enzyme. J Mol Biol 390:231–244

    Article  PubMed  CAS  Google Scholar 

  18. Yang PK, Rotondo G, Porras T, Legrain P, Chanfreau G (2002) The Shq1p.Naf1p complex is required for box H/ACA small nucleolar ribonucleoprotein particle biogenesis. J Biol Chem 277:45235–45242

    Article  PubMed  CAS  Google Scholar 

  19. McKeegan KS, Debieux CM, Watkins NJ (2009) Evidence that the AAA + proteins TIP48 and TIP49 bridge interactions between 15.5 K and the related NOP56 and NOP58 proteins during box C/D snoRNP biogenesis. Mol Cell Biol 29:4971–4981

    Article  PubMed  CAS  Google Scholar 

  20. Huen J, Kakihara Y, Ugwu F, Cheung KL, Ortega J, Houry WA (2010) Rvb1-Rvb2: essential ATP-dependent helicases for critical complexes. Biochem Cell Biol 88:29–40

    Article  PubMed  CAS  Google Scholar 

  21. Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, Costanzo M, Brost RL, Boone C, Hughes TR, Yip CM, Houry WA (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 180:563–578

    Article  PubMed  CAS  Google Scholar 

  22. Watkins NJ, Lemm I, Ingelfinger D, Schneider C, Hossbach M, Urlaub H, Luhrmann R (2004) Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex. Mol Cell 16:789–798

    Article  PubMed  CAS  Google Scholar 

  23. Grozdanov PN, Roy S, Kittur N, Meier UT (2009) SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA 15:1188–1197

    Article  PubMed  CAS  Google Scholar 

  24. Kiss T, Fayet-Lebaron E, Jady BE (2010) Box H/ACA small ribonucleoproteins. Mol Cell 37:597–606

    Article  PubMed  Google Scholar 

  25. Fatica A, Dlakic M, Tollervey D (2002) Naf1 p is a box H/ACA snoRNP assembly factor. RNA 8:1502–1514

    PubMed  CAS  Google Scholar 

  26. Matera AG, Terns RM, Terns MP (2007) Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 8:209–220

    Article  PubMed  CAS  Google Scholar 

  27. Bertrand E, Fournier MJ (2004) The snoRNPs and related machines: ancient devices that mediate maturation of rRNA and other RNAs. In: Olson MOJ (ed) The nucleolus. Kluwer, New York, pp 225–261

    Google Scholar 

  28. Stanek D, Neugebauer KM (2006) The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma 115:343–354

    Article  PubMed  CAS  Google Scholar 

  29. Lestrade L, Weber MJ (2006) snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res 34:D158–D162

    Article  PubMed  CAS  Google Scholar 

  30. Fedorov A, Stombaugh J, Harr MW, Yu S, Nasalean L, Shepelev V (2005) Computer identification of snoRNA genes using a Mammalian Orthologous Intron Database. Nucleic Acids Res 33:4578–4583

    Article  PubMed  CAS  Google Scholar 

  31. Washietl S, Hofacker IL, Lukasser M, Huttenhofer A, Stadler PF (2005) Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 23:1383–1390

    Article  PubMed  CAS  Google Scholar 

  32. Rearick D, Prakash A, McSweeny A, Shepard SS, Fedorova L, Fedorov A (2010) Critical association of ncRNA with introns. Nucleic Acids Res 39:2357–2366

    Article  PubMed  Google Scholar 

  33. van Nues RW, Granneman S, Kudla G, Sloan KE, Chicken M, Tollervey D, Watkins NJ (2011) Box C/D snoRNP catalysed methylation is aided by additional pre-rRNA base-pairing. EMBO J 30:2420–2430

    Google Scholar 

  34. Kiss-Laszlo Z, Henry Y, Kiss T (1998) Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J 17:797–807

    Article  PubMed  CAS  Google Scholar 

  35. Jady BE, Kiss T (2001) A small nucleolar guide RNA functions both in 2′-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J 20:541–551

    Article  PubMed  CAS  Google Scholar 

  36. Kass S, Tyc K, Steitz JA, Sollner-Webb B (1990) The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60:897–908

    Article  PubMed  CAS  Google Scholar 

  37. Hughes JM, Ares M Jr (1991) Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J 10:4231–4239

    PubMed  CAS  Google Scholar 

  38. Peculis BA, Steitz JA (1993) Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73:1233–1245

    Article  PubMed  CAS  Google Scholar 

  39. Liang WQ, Fournier MJ (1995) U14 base-pairs with 18S rRNA: a novel snoRNA interaction required for rRNA processing. Genes Dev 9:2433–2443

    Article  PubMed  CAS  Google Scholar 

  40. Tycowski KT, Shu MD, Steitz JA (1994) Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. Science 266:1558–1561

    Article  PubMed  CAS  Google Scholar 

  41. Kiss T, Marshallsay C, Filipowicz W (1992) 7–2/MRP RNAs in plant and mammalian cells: association with higher order structures in the nucleolus. EMBO J 11:3737–3746

    PubMed  CAS  Google Scholar 

  42. Davila Lopez M, Rosenblad MA, Samuelsson T (2009) Conserved and variable domains of RNase MRP RNA. RNA Biol 6:208–220

    Article  PubMed  Google Scholar 

  43. Theimer CA, Feigon J (2006) Structure and function of telomerase RNA. Curr Opin Struct Biol 16:307–318

    Article  PubMed  CAS  Google Scholar 

  44. Blackburn EH, Collins K (2011) Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb Perspect Biol 3:a003558

    Article  Google Scholar 

  45. Brimacombe R, Mitchell P, Osswald M, Stade K, Bochkariov D (1993) Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J 7:161–167

    PubMed  CAS  Google Scholar 

  46. Ofengand J, Bakin A (1997) Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol 266:246–268

    Article  PubMed  CAS  Google Scholar 

  47. King TH, Liu B, McCully RR, Fournier MJ (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11:425–435

    Article  PubMed  CAS  Google Scholar 

  48. Terns MP, Terns RM (2002) Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr 10:17–39

    PubMed  CAS  Google Scholar 

  49. Ofengand J, Rudd KE (2000) Bacterial, archaeal and organellar rRNA pseudouridines and methylated nucleosides and their enzymes. In: Garrett RA, Douthwaite SR, Liljas A, Matheson AT, Moore PB, Noller HF (eds) The ribosome: structure, function, antibiotics, and cellular interactions. ASM Press, Washington, pp 175–189

    Google Scholar 

  50. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303–308

    Article  PubMed  CAS  Google Scholar 

  51. Doe CM, Relkovic D, Garfield AS, Dalley JW, Theobald DE, Humby T, Wilkinson LS, Isles AR (2009) Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. Hum Mol Genet 18:2140–2148

    Article  PubMed  CAS  Google Scholar 

  52. Duker AL, Ballif BC, Bawle EV, Person RE, Mahadevan S, Alliman S, Thompson R, Traylor R, Bejjani BA, Shaffer LG, Rosenfeld JA, Lamb AN, Sahoo T (2010) Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome. Eur J Hum Genet 18:1196–1201

    Article  PubMed  CAS  Google Scholar 

  53. Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008) Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40:719–721

    Article  PubMed  CAS  Google Scholar 

  54. de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, Brady AF, Fairbrother UL, Dattani M, Keogh JM, Henning E, Yeo GS, O’Rahilly S, Froguel P, Farooqi IS, Blakemore AI (2009) A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 18:3257–3265

    Article  PubMed  Google Scholar 

  55. Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, Francke U (2008) SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One 3:e1709

    Article  PubMed  Google Scholar 

  56. Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B (2007) hnRNP proteins and splicing control. Adv Exp Med Biol 623:123–147

    Article  PubMed  Google Scholar 

  57. Ono M, Yamada K, Avolio F, Scott MS, van Koningsbruggen S, Barton GJ, Lamond AI (2010) Analysis of human small nucleolar RNAs (snoRNA) and the development of snoRNA modulator of gene expression vectors. Mol Biol Cell 21:1569–1584

    Article  PubMed  CAS  Google Scholar 

  58. Ono M, Scott MS, Yamada K, Avolio F, Barton GJ, Lamond AI (2011) Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res 39:3879–3891

    Article  PubMed  CAS  Google Scholar 

  59. Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G (2008) A human snoRNA with microRNA-like functions. Mol Cell 32:519–528

    Article  PubMed  CAS  Google Scholar 

  60. Saraiya AA, Wang CC (2008) snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog 4:e1000224

    Article  PubMed  Google Scholar 

  61. Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS (2009) Small RNAs derived from snoRNAs. RNA 15:1233–1240

    Article  PubMed  CAS  Google Scholar 

  62. Scott MS, Avolio F, Ono M, Lamond AI, Barton GJ (2009) Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol 5:e1000507

    Article  PubMed  Google Scholar 

  63. Politz JC, Hogan EM, Pederson T (2009) MicroRNAs with a nucleolar location. RNA 15:1705–1715

    Article  PubMed  CAS  Google Scholar 

  64. Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J (2011) Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res 39:675–686

    Article  PubMed  CAS  Google Scholar 

  65. Weber MJ (2006) Mammalian small nucleolar RNAs are mobile genetic elements. PLoS Genet 2:e205

    Article  PubMed  Google Scholar 

  66. Burroughs AM, Ando Y, de Hoon ML, Tomaru Y, Suzuki H, Hayashizaki Y, Daub CO (2011) Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol 8:158–177

    Article  PubMed  Google Scholar 

  67. Rogelj B (2006) Brain-specific small nucleolar RNAs. J Mol Neurosci 28:103–109

    Article  PubMed  CAS  Google Scholar 

  68. Rogelj B, Hartmann CE, Yeo CH, Hunt SP, Giese KP (2003) Contextual fear conditioning regulates the expression of brain-specific small nucleolar RNAs in hippocampus. Eur J Neurosci 18:3089–3096

    Article  PubMed  Google Scholar 

  69. Cavaille J, Nicoloso M, Bachellerie JP (1996) Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383:732–735

    Article  PubMed  CAS  Google Scholar 

  70. Bortolin ML, Ganot P, Kiss T (1999) Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J 18:457–469

    Article  PubMed  CAS  Google Scholar 

  71. Ploner A, Ploner C, Lukasser M, Niederegger H, Huttenhofer A (2009) Methodological obstacles in knocking down small noncoding RNAs. RNA 15:1797–1804

    Article  PubMed  CAS  Google Scholar 

  72. Liang XH, Vickers TA, Guo S, Crooke ST (2011) Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice. Nucleic Acids Res 39:e13

    Article  PubMed  Google Scholar 

  73. Bazeley PS, Shepelev V, Talebizadeh Z, Butler MG, Fedorova L, Filatov V, Fedorov A (2008) snoTARGET shows that human orphan snoRNA targets locate close to alternative splice junctions. Gene 408:172–179

    Article  PubMed  CAS  Google Scholar 

  74. Kehr S, Bartschat S, Stadler PF, Tafer H (2011) PLEXY: efficient target prediction for Box C/D snoRNAs. Bioinformatics 27:279–280

    Article  PubMed  CAS  Google Scholar 

  75. Tafer H, Kehr S, Hertel J, Hofacker IL, Stadler PF (2010) RNAsnoop: efficient target prediction for H/ACA snoRNAs. Bioinformatics 26:610–616

    Article  PubMed  CAS  Google Scholar 

  76. Hertel J, Hofacker IL, Stadler PF (2008) SnoReport: computational identification of snoRNAs with unknown targets. Bioinformatics 24:158–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rogelj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratkovič, T., Rogelj, B. Biology and applications of small nucleolar RNAs. Cell. Mol. Life Sci. 68, 3843–3851 (2011). https://doi.org/10.1007/s00018-011-0762-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0762-y

Keywords

Navigation