Skip to main content

Advertisement

Log in

Human dendritic cell subsets and function in health and disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The method of choice for the development of new vaccines is to target distinct dendritic cell subsets with antigen in vivo and to harness their function in situ to enhance cell-mediated immunity or induce tolerance to specific antigens. The innate functions of dendritic cells themselves may also be targeted by inhibitors or activators that would target a specific function such as interferon production, potentially important in autoimmune disease and chronic viral infections. Importantly targeting dendritic cells requires detailed knowledge of both the surface phenotype and function of each dendritic cell subset, including how they may respond to different types of vaccine adjuvants, their ability to produce soluble mediators and to process and present antigens and induce priming of naïve T cells. This review summarizes our knowledge of the functional attributes of the human dendritic cell subsets in the steady state and upon activation and their roles in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ag:

Antigen

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cells

ESAM:

Endothelial cell-selective adhesion molecule

Flt3:

Fms-like tyrosine kinase 3

Flt3L:

Fms-like tyrosine kinase 3 ligand

HCV:

Hepatitis C virus

IFN:

Interferon

IFN-I:

Type I interferons

IFN-III:

Type III interferons (also known as IFN-λ)

LC:

Langerhans cells

MoDC:

Monocytes-derived dendritic cells

Necl2:

Nectin-like protein 2

NET:

Neutrophil extracellular trap

PDC:

Plasmacytoid dendritic cells

PAMPs or DAMPs:

Pathogen or damage associated molecular patterns

PBMC:

Peripheral blood mononuclear cells

Poly I:C:

Polyinosinic:polycytidylic acid

PRR:

Pattern recognition receptors

SLE:

Systemic lupus erythematosus

SNP:

Single nucleotide polymorphism

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TSLP:

Thymic stromal lymphopoietin

TNF:

Tumor necrosis factor

References

  1. Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604. doi:10.1146/annurev-immunol-020711-074950

    Article  CAS  PubMed  Google Scholar 

  2. Boltjes A, van Wijk F (2014) Human dendritic cell functional specialization in steady-state and inflammation. Front Immunol 5:131. doi:10.3389/fimmu.2014.00131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Durand M, Segura E (2015) The known unknowns of the human dendritic cell network. Front Immunol 6:129. doi:10.3389/fimmu.2015.00129

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. O’Doherty U, Peng M, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N, Steinman RM (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82(3):487–493

    PubMed Central  PubMed  Google Scholar 

  5. Van Voorhis W, Hair L, Steinman R, Kaplan G (1982) Human dendritic cells. Enrichment and characterization from peripheral blood. J Exp Med 155(4):1172–1187. doi:10.1084/jem.155.4.1172

    Article  PubMed Central  PubMed  Google Scholar 

  6. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J (2000) BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165(11):6037–6046

    Article  CAS  PubMed  Google Scholar 

  7. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN (2002) Characterization of human blood dendritic cell subsets. Blood 100(13):4512–4520. doi:10.1182/blood-2001-11-0097-11-0097

    Article  CAS  PubMed  Google Scholar 

  8. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116(16):e74–e80. doi:10.1182/blood-2010-02-258558

    Article  CAS  PubMed  Google Scholar 

  9. Lindstedt M, Lundberg K, Borrebaeck CA (2005) Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. J Immunology 175(8):4839–4846 175/8/4839 [pii]

    Article  CAS  Google Scholar 

  10. Lee J, Breton G, Oliveira TY, Zhou YJ, Aljoufi A, Puhr S, Cameron MJ, Sekaly RP, Nussenzweig MC, Liu K (2015) Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J Exp Med 212(3):385–399. doi:10.1084/jem.20141442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Breton G, Lee J, Zhou YJ, Schreiber JJ, Keler T, Puhr S, Anandasabapathy N, Schlesinger S, Caskey M, Liu K, Nussenzweig MC (2015) Circulating precursors of human CD1c+ and CD141+ dendritic cells. J Exp Med 212(3):401–413. doi:10.1084/jem.20141441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, Wasan PS, Wang XN, Malinarich F, Malleret B, Larbi A, Tan P, Zhao H, Poidinger M, Pagan S, Cookson S, Dickinson R, Dimmick I, Jarrett RF, Renia L, Tam J, Song C, Connolly J, Chan JK, Gehring A, Bertoletti A, Collin M, Ginhoux F (2012) Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37(1):60–73. doi:10.1016/j.immuni.2012.04.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Robbins SH, Walzer T, Dembele D, Thibault C, Defays A, Bessou G, Xu H, Vivier E, Sellars M, Pierre P, Sharp FR, Chan S, Kastner P, Dalod M (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9(1):R17. doi:10.1186/gb-2008-9-1-r17

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, Zeng R, Dent A, Ansel KM, Diamond B, Hadeiba H, Butcher EC (2014) Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol 15(1):98–108. doi:10.1038/ni.2768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bamboat ZM, Stableford JA, Plitas G, Burt BM, Nguyen HM, Welles AP, Gonen M, Young JW, DeMatteo RP (2009) Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol 182(4):1901–1911. doi:10.4049/jimmunol.0803404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ (2010) Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207(6):1247–1260. doi:10.1084/jem.20092140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D, Murphy KM, Hakansson UK, Moita LF, Agace WW, Bonnet D, Reis e Sousa C (2012) DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 119(25):6052–6062. doi:10.1182/blood-2012-01-406967

    Article  CAS  PubMed  Google Scholar 

  18. Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C (2010) Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1261–1271. doi:10.1084/jem.20092618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I, Dalod M (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 207(6):1283–1292. doi:10.1084/jem.20100223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Proietto AI, Mittag D, Roberts AW, Sprigg N, Wu L (2012) The equivalents of human blood and spleen dendritic cell subtypes can be generated in vitro from human CD34(+) stem cells in the presence of fms-like tyrosine kinase 3 ligand and thrombopoietin. Cell Mol Immunol 9(6):446–454. doi:10.1038/cmi.2012.48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ding Y, Wilkinson A, Idris A, Fancke B, O’Keeffe M, Khalil D, Ju X, Lahoud MH, Caminschi I, Shortman K, Rodwell R, Vuckovic S, Radford KJ (2014) FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo. J Immunol 192(4):1982–1989. doi:10.4049/jimmunol.1302391

    Article  CAS  PubMed  Google Scholar 

  22. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, Fortin A, Haniffa M, Ceron-Gutierrez L, Bacon CM, Menon G, Trouillet C, McDonald D, Carey P, Ginhoux F, Alsina L, Zumwalt TJ, Kong XF, Kumararatne D, Butler K, Hubeau M, Feinberg J, Al-Muhsen S, Cant A, Abel L, Chaussabel D, Doffinger R, Talesnik E, Grumach A, Duarte A, Abarca K, Moraes-Vasconcelos D, Burk D, Berghuis A, Geissmann F, Collin M, Casanova JL, Gros P (2011) IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 365(2):127–138. doi:10.1056/NEJMoa1100066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Edwards AD, Diebold SS, Slack EM, Tomizawa H, Hemmi H, Kaisho T, Akira S, Reis e Sousa C (2003) Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol 33(4):827–833. doi:10.1002/eji.200323797

    Article  CAS  PubMed  Google Scholar 

  24. Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, Rizzitelli A, Wu L, Vremec D, van Dommelen SL, Campbell IK, Maraskovsky E, Braley H, Davey GM, Mottram P, van de Velde N, Jensen K, Lew AM, Wright MD, Heath WR, Shortman K, Lahoud MH (2008) The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112(8):3264–3273. doi:10.1182/blood-2008-05-155176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Huysamen C, Willment JA, Dennehy KM, Brown GD (2008) CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem 283(24):16693–16701. doi:10.1074/jbc.M709923200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR, Reis e Sousa C (2008) Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Investig 118(6):2098–2110. doi:10.1172/JCI34584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Galibert L, Diemer GS, Liu Z, Johnson RS, Smith JL, Walzer T, Comeau MR, Rauch CT, Wolfson MF, Sorensen RA, der Vuurst Van, de Vries AR, Branstetter DG, Koelling RM, Scholler J, Fanslow WC, Baum PR, Derry JM, Yan W (2005) Nectin-like protein 2 defines a subset of T-cell zone dendritic cells and is a ligand for class-I-restricted T-cell-associated molecule. J Biol Chem 280(23):21955–21964. doi:10.1074/jbc.M502095200

    Article  CAS  PubMed  Google Scholar 

  28. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c+ CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 207(6):1273–1281. doi:10.1084/jem.20100348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hemont C, Neel A, Heslan M, Braudeau C, Josien R (2013) Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness. J Leukoc Biol 93(4):599–609. doi:10.1189/jlb.0912452

    Article  CAS  PubMed  Google Scholar 

  30. Radford KJ, Tullett KM, Lahoud MH (2014) Dendritic cells and cancer immunotherapy. Curr Opin Immunol 27:26–32. doi:10.1016/j.coi.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  31. Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F, Gruarin P, Bianco A, Steckel B, Moro M, Crosti M, Romagnani C, Stolzel K, Torretta S, Pignataro L, Scheibenbogen C, Neddermann P, De Francesco R, Abrignani S, Geginat J (2013) Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood 122(6):932–942. doi:10.1182/blood-2013-04-495424

    Article  CAS  PubMed  Google Scholar 

  32. Igyarto BZ, Haley K, Ortner D, Bobr A, Gerami-Nejad M, Edelson BT, Zurawski SM, Malissen B, Zurawski G, Berman J, Kaplan DH (2011) Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35(2):260–272. doi:10.1016/j.immuni.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  33. Lauterbach H, Bathke B, Gilles S, Traidl-Hoffmann C, Luber CA, Fejer G, Freudenberg MA, Davey GM, Vremec D, Kallies A, Wu L, Shortman K, Chaplin P, Suter M, O’Keeffe M, Hochrein H (2010) Mouse CD8alpha+ DCs and human BDCA3+ DCs are major producers of IFN-lambda in response to poly IC. J Exp Med 207(12):2703–2717. doi:10.1084/jem.20092720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Egli A, Santer DM, O’Shea D, Tyrrell D, Houghton M (2014) The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Emerg Microbes Infect 3:e51. doi:10.1038/emi.2014.51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Nice TJ, Baldridge MT, McCune BT, Norman JM, Lazear HM, Artyomov M, Diamond MS, Virgin HW (2015) Interferon-lambda cures persistent murine norovirus infection in the absence of adaptive immunity. Science 347(6219):269–273. doi:10.1126/science.1258100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Pott J, Mahlakoiv T, Mordstein M, Duerr CU, Michiels T, Stockinger S, Staeheli P, Hornef MW (2011) IFN-lambda determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci USA 108(19):7944–7949. doi:10.1073/pnas.1100552108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461(7262):399–401. doi:10.1038/nature08309

    Article  CAS  PubMed  Google Scholar 

  38. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D, O’Huigin C, Kidd J, Kidd K, Khakoo SI, Alexander G, Goedert JJ, Kirk GD, Donfield SM, Rosen HR, Tobler LH, Busch MP, McHutchison JG, Goldstein DB, Carrington M (2009) Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461(7265):798–801. doi:10.1038/nature08463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kelly A, Fahey R, Fletcher JM, Keogh C, Carroll AG, Siddachari R, Geoghegan J, Hegarty JE, Ryan EJ, O’Farrelly C (2014) CD141(+) myeloid dendritic cells are enriched in healthy human liver. J Hepatol 60(1):135–142. doi:10.1016/j.jhep.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  40. Yoshio S, Kanto T, Kuroda S, Matsubara T, Higashitani K, Kakita N, Ishida H, Hiramatsu N, Nagano H, Sugiyama M, Murata K, Fukuhara T, Matsuura Y, Hayashi N, Mizokami M, Takehara T (2013) Human blood dendritic cell antigen 3 (BDCA3)(+) dendritic cells are a potent producer of interferon-lambda in response to hepatitis C virus. Hepatology 57(5):1705–1715. doi:10.1002/hep.26182

    Article  CAS  PubMed  Google Scholar 

  41. Velazquez VM, Hon H, Ibegbu C, Knechtle SJ, Kirk AD, Grakoui A (2012) Hepatic enrichment and activation of myeloid dendritic cells during chronic hepatitis C virus infection. Hepatology 56(6):2071–2081. doi:10.1002/hep.25904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Cohn L, Chatterjee B, Esselborn F, Smed-Sorensen A, Nakamura N, Chalouni C, Lee BC, Vandlen R, Keler T, Lauer P, Brockstedt D, Mellman I, Delamarre L (2013) Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J Exp Med 210(5):1049–1063. doi:10.1084/jem.20121251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Flinsenberg TW, Compeer EB, Koning D, Klein M, Amelung FJ, van Baarle D, Boelens JJ, Boes M (2012) Fcgamma receptor antigen targeting potentiates cross-presentation by human blood and lymphoid tissue BDCA-3+ dendritic cells. Blood 120(26):5163–5172. doi:10.1182/blood-2012-06-434498

    Article  CAS  PubMed  Google Scholar 

  44. Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S, Feest C, Fletcher G, Durkin C, Postigo A, Skehel M, Batista F, Thompson B, Way M, Reis e Sousa C, Schulz O (2012) F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36(4):635–645. doi:10.1016/j.immuni.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  45. Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P, Rosewell I, Reis e Sousa C (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458(7240):899–903. doi:10.1038/nature07750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljestrom P, Reis e Sousa C (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433(7028):887–892. doi:10.1038/nature03326

    Article  CAS  PubMed  Google Scholar 

  47. Zelenay S, Keller AM, Whitney PG, Schraml BU, Deddouche S, Rogers NC, Schulz O, Sancho D, Reis e Sousa C (2012) The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J Clin Investig 122(5):1615–1627. doi:10.1172/JCI60644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, Tullett KM, Robin AY, Brammananth R, van Delft MF, Lu J, O’Reilly LA, Josefsson EC, Kile BT, Chin WJ, Mintern JD, Olshina MA, Wong W, Baum J, Wright MD, Huang DC, Mohandas N, Coppel RL, Colman PM, Nicola NA, Shortman K, Lahoud MH (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36(4):646–657. doi:10.1016/j.immuni.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  49. Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D, Shortman K, Wu L, Harrison LC (2011) Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J Immunol 186(11):6207–6217. doi:10.4049/jimmunol.1002632

    Article  CAS  PubMed  Google Scholar 

  50. Segura E, Durand M, Amigorena S (2013) Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J Exp Med 210(5):1035–1047. doi:10.1084/jem.20121103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Guttler S, Hutloff A, Mages HW, Ranke K, Schaefer M, Jack RS, Henn V, Kroczek RA (2009) Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31(5):823–833. doi:10.1016/j.immuni.2009.08.027

    Article  CAS  PubMed  Google Scholar 

  52. Broz ML, Binnewies M, Boldajipour B, Nelson AE, Pollack JL, Erle DJ, Barczak A, Rosenblum MD, Daud A, Barber DL, Amigorena S, Van’t Veer LJ, Sperling AI, Wolf DM, Krummel MF (2014) Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26(5):638–652. doi:10.1016/j.ccell.2014.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B, Schraml BU, Unanue ER, Diamond MS, Schreiber RD, Murphy TL, Murphy KM (2008) Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100. doi:10.1126/science.1164206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Tullett KM, Lahoud MH, Radford KJ (2014) Harnessing human cross-presenting CLEC9A(+)XCR1(+) dendritic cells for immunotherapy. Front Immunol 5:239. doi:10.3389/fimmu.2014.00239

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Yu CI, Becker C, Metang P, Marches F, Wang Y, Toshiyuki H, Banchereau J, Merad M, Palucka AK (2014) Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol 193(9):4335–4343. doi:10.4049/jimmunol.1401159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, Ho AW, See P, Shin A, Wasan PS, Hoeffel G, Malleret B, Heiseke A, Chew S, Jardine L, Purvis HA, Hilkens CM, Tam J, Poidinger M, Stanley ER, Krug AB, Renia L, Sivasankar B, Ng LG, Collin M, Ricciardi-Castagnoli P, Honda K, Haniffa M, Ginhoux F (2013) IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38(5):970–983. doi:10.1016/j.immuni.2013.04.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S (2012) Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med 209(4):653–660. doi:10.1084/jem.20111457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Chu CC, Ali N, Karagiannis P, Di Meglio P, Skowera A, Napolitano L, Barinaga G, Grys K, Sharif-Paghaleh E, Karagiannis SN, Peakman M, Lombardi G, Nestle FO (2012) Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J Exp Med 209(5):935–945. doi:10.1084/jem.20112583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Haniffa M, Gunawan M, Jardine L (2015) Human skin dendritic cells in health and disease. J Dermatol Sci 77(2):85–92. doi:10.1016/j.jdermsci.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  60. Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA (2005) Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol 32(3):177–184. doi:10.1165/rcmb.2004-0279OC

    Article  CAS  PubMed  Google Scholar 

  61. Klechevsky E (2013) Human dendritic cells—stars in the skin. Eur J Immunol 43(12):3147–3155. doi:10.1002/eji.201343790

    Article  CAS  PubMed  Google Scholar 

  62. Masten BJ, Olson GK, Tarleton CA, Rund C, Schuyler M, Mehran R, Archibeque T, Lipscomb MF (2006) Characterization of myeloid and plasmacytoid dendritic cells in human lung. J Immunol 177(11):7784–7793 177/11/7784 [pii]

    Article  CAS  PubMed  Google Scholar 

  63. Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hagerbrand K, Marsal J, Gudjonsson S, Hakansson U, Reizis B, Kotarsky K, Agace WW (2013) IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38(5):958–969. doi:10.1016/j.immuni.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  64. Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A, Dalod M, Soumelis V, Amigorena S (2013) Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 38(2):336–348. doi:10.1016/j.immuni.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  65. Zaba LC, Fuentes-Duculan J, Steinman RM, Krueger JG, Lowes MA (2007) Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J Clin Investig 117(9):2517–2525. doi:10.1172/JCI32282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Langlet C, Tamoutounour S, Henri S, Luche H, Ardouin L, Gregoire C, Malissen B, Guilliams M (2012) CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J Immunol 188(4):1751–1760. doi:10.4049/jimmunol.1102744

    Article  CAS  PubMed  Google Scholar 

  67. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, Hammad H, Lambrecht BN (2013) Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38(2):322–335. doi:10.1016/j.immuni.2012.10.016

    Article  CAS  PubMed  Google Scholar 

  68. Tamoutounour S, Henri S, Lelouard H, de Bovis B, de Haar C, van der Woude CJ, Woltman AM, Reyal Y, Bonnet D, Sichien D, Bain CC, Mowat AM, Reis e Sousa C, Poulin LF, Malissen B, Guilliams M (2012) CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J Immunol 42(12):3150–3166. doi:10.1002/eji.201242847

    Article  CAS  PubMed  Google Scholar 

  69. Bigley V, McGovern N, Milne P, Dickinson R, Pagan S, Cookson S, Haniffa M, Collin M (2015) Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells. J Leukoc Biol 97(4):627–634. doi:10.1189/jlb.1HI0714-351R

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Jefford M, Schnurr M, Toy T, Masterman KA, Shin A, Beecroft T, Tai TY, Shortman K, Shackleton M, Davis ID, Parente P, Luft T, Chen W, Cebon J, Maraskovsky E (2003) Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood 102(5):1753–1763. doi:10.1182/blood-2002-12-3854-12-3854

    Article  CAS  PubMed  Google Scholar 

  71. Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J, Caron D, Lebsack ME, McKenna HJ (2000) In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96(3):878–884

    CAS  PubMed  Google Scholar 

  72. Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, Caron D, Maliszewski C, Davoust J, Fay J, Palucka K (2000) Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 165(1):566–572

    Article  CAS  PubMed  Google Scholar 

  73. Lozza L, Farinacci M, Bechtle M, Staber M, Zedler U, Baiocchini A, Del Nonno F, Kaufmann SH (2014) Communication between human dendritic cell subsets in tuberculosis: requirements for Naive CD4(+) T cell stimulation. Front Immunol 5:324. doi:10.3389/fimmu.2014.00324

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA (2000) CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404(6780):884–888. doi:10.1038/35009119

    Article  CAS  PubMed  Google Scholar 

  75. Meixlsperger S, Leung CS, Ramer PC, Pack M, Vanoaica LD, Breton G, Pascolo S, Salazar AM, Dzionek A, Schmitz J, Steinman RM, Munz C (2013) CD141+ dendritic cells produce prominent amounts of IFN-alpha after dsRNA recognition and can be targeted via DEC-205 in humanized mice. Blood 121(25):5034–5044. doi:10.1182/blood-2012-12-473413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Dillon SM, Rogers LM, Howe R, Hostetler LA, Buhrman J, McCarter MD, Wilson CC (2010) Human intestinal lamina propria CD1c+ dendritic cells display an activated phenotype at steady state and produce IL-23 in response to TLR7/8 stimulation. J Immunol 184(12):6612–6621. doi:10.4049/jimmunol.1000041

    Article  CAS  PubMed  Google Scholar 

  77. Gerosa F, Baldani-Guerra B, Lyakh LA, Batoni G, Esin S, Winkler-Pickett RT, Consolaro MR, De Marchi M, Giachino D, Robbiano A, Astegiano M, Sambataro A, Kastelein RA, Carra G, Trinchieri G (2008) Differential regulation of interleukin 12 and interleukin 23 production in human dendritic cells. J Exp Med 205(6):1447–1461. doi:10.1084/jem.20071450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6(8):769–776. doi:10.1038/ni1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, Homey B, Barrat FJ, Zal T, Gilliet M (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206(9):1983–1994. doi:10.1084/jem.20090480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Vollmer J, Tluk S, Schmitz C, Hamm S, Jurk M, Forsbach A, Akira S, Kelly KM, Reeves WH, Bauer S, Krieg AM (2005) Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med 202(11):1575–1585. doi:10.1084/jem.20051696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Demaria O, Pagni PP, Traub S, de Gassart A, Branzk N, Murphy AJ, Valenzuela DM, Yancopoulos GD, Flavell RA, Alexopoulou L (2010) TLR8 deficiency leads to autoimmunity in mice. J Clin Investig 120(10):3651–3662. doi:10.1172/JCI42081

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Guiducci C, Gong M, Cepika AM, Xu Z, Tripodo C, Bennett L, Crain C, Quartier P, Cush JJ, Pascual V, Coffman RL, Barrat FJ (2013) RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 210(13):2903–2919. doi:10.1084/jem.20131044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Sacre SM, Lo A, Gregory B, Simmonds RE, Williams L, Feldmann M, Brennan FM, Foxwell BM (2008) Inhibitors of TLR8 reduce TNF production from human rheumatoid synovial membrane cultures. J Immunol 181(11):8002–8009

    Article  CAS  PubMed  Google Scholar 

  84. Scadding GW, Shamji MH, Jacobson MR, Lee DI, Wilson D, Lima MT, Pitkin L, Pilette C, Nouri-Aria K, Durham SR (2010) Sublingual grass pollen immunotherapy is associated with increases in sublingual Foxp3-expressing cells and elevated allergen-specific immunoglobulin G4, immunoglobulin A and serum inhibitory activity for immunoglobulin E-facilitated allergen binding to B cells. Clin Exp Allergy 40(4):598–606. doi:10.1111/j.1365-2222.2010.03462.x

    CAS  PubMed  Google Scholar 

  85. Melum GR, Farkas L, Scheel C, Van Dieren B, Gran E, Liu YJ, Johansen FE, Jahnsen FL, Baekkevold ES (2014) A thymic stromal lymphopoietin-responsive dendritic cell subset mediates allergic responses in the upper airway mucosa. J Allergy Clin Immunol 134(3):613–621 e617. doi:10.1016/j.jaci.2014.05.010

  86. Kamekura R, Kojima T, Koizumi J, Ogasawara N, Kurose M, Go M, Harimaya A, Murata M, Tanaka S, Chiba H, Himi T, Sawada N (2009) Thymic stromal lymphopoietin enhances tight-junction barrier function of human nasal epithelial cells. Cell Tissue Res 338(2):283–293. doi:10.1007/s00441-009-0855-1

    Article  CAS  PubMed  Google Scholar 

  87. Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H (2013) The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol 66:129–155. doi:10.1016/B978-0-12-404717-4.00004-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Froidure A, Shen C, Gras D, Van Snick J, Chanez P, Pilette C (2014) Myeloid dendritic cells are primed in allergic asthma for thymic stromal lymphopoietin-mediated induction of Th2 and Th9 responses. Allergy 69(8):1068–1076. doi:10.1111/all.12435

    Article  CAS  PubMed  Google Scholar 

  89. Rydnert F, Lundberg K, Greiff L, Lindstedt M (2014) Circulating CD1c(+) DCs are superior at activating Th2 responses upon Phl p stimulation compared with basophils and pDCs. Immunol Cell Biol 92(6):557–560. doi:10.1038/icb.2014.23

    Article  CAS  PubMed  Google Scholar 

  90. Nierkens S, Tel J, Janssen E, Adema GJ (2013) Antigen cross-presentation by dendritic cell subsets: one general or all sergeants? Trends Immunol 34(8):361–370. doi:10.1016/j.it.2013.02.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Yu CI, Becker C, Wang Y, Marches F, Helft J, Leboeuf M, Anguiano E, Pourpe S, Goller K, Pascual V, Banchereau J, Merad M, Palucka K (2013) Human CD1c+ dendritic cells drive the differentiation of CD103+ CD8+ mucosal effector T cells via the cytokine TGF-beta. Immunity 38(4):818–830. doi:10.1016/j.immuni.2013.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Fujikado N, Saijo S, Yonezawa T, Shimamori K, Ishii A, Sugai S, Kotaki H, Sudo K, Nose M, Iwakura Y (2008) Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 14 (2):176–180. doi: http://www.nature.com/nm/journal/v14/n2/suppinfo/nm1697_S1.html

  93. Jovanovic DV, Boumsell L, Bensussan A, Chevalier X, Mancini A, di Battista JA (2011) CD101 expression and function in normal and rheumatoid arthritis-affected human T cells and monocytes/macrophages. J Rheumatol 38(3):419–428. doi:10.3899/jrheum.100676

    Article  CAS  PubMed  Google Scholar 

  94. Kassianos AJ, Hardy MY, Ju X, Vijayan D, Ding Y, Vulink AJ, McDonald KJ, Jongbloed SL, Wadley RB, Wells C, Hart DN, Radford KJ (2012) Human CD1c (BDCA-1)+ myeloid dendritic cells secrete IL-10 and display an immuno-regulatory phenotype and function in response to Escherichia coli. Eur J Immunol 42(6):1512–1522. doi:10.1002/eji.201142098

    Article  CAS  PubMed  Google Scholar 

  95. Iliev ID, Spadoni I, Mileti E, Matteoli G, Sonzogni A, Sampietro GM, Foschi D, Caprioli F, Viale G, Rescigno M (2009) Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 58(11):1481–1489. doi:10.1136/gut.2008.175166

    Article  CAS  PubMed  Google Scholar 

  96. Sato T, Kitawaki T, Fujita H, Iwata M, Iyoda T, Inaba K, Ohteki T, Hasegawa S, Kawada K, Sakai Y, Ikeuchi H, Nakase H, Niwa A, Takaori-Kondo A, Kadowaki N (2013) Human CD1c(+) myeloid dendritic cells acquire a high level of retinoic acid-producing capacity in response to vitamin D(3). J Immunol 191(6):3152–3160. doi:10.4049/jimmunol.1203517

    Article  CAS  PubMed  Google Scholar 

  97. Tsoumakidou M, Tousa S, Semitekolou M, Panagiotou P, Panagiotou A, Morianos I, Litsiou E, Trochoutsou AI, Konstantinou M, Potaris K, Footitt J, Mallia P, Zakynthinos S, Johnston SL, Xanthou G (2014) Tolerogenic signaling by pulmonary CD1c(+) dendritic cells induces regulatory T cells in patients with chronic obstructive pulmonary disease by IL-27/IL-10/inducible costimulator ligand. J Allergy Clin Immunol 134 (4):944–954 e948. doi:10.1016/j.jaci.2014.05.045

  98. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183. doi:10.1146/annurev-immunol-031210-101345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306. doi:10.1146/annurev.immunol.23.021704.115633

    Article  CAS  PubMed  Google Scholar 

  100. Yin Z, Dai J, Deng J, Sheikh F, Natalia M, Shih T, Lewis-Antes A, Amrute SB, Garrigues U, Doyle S, Donnelly RP, Kotenko SV, Fitzgerald-Bocarsly P (2012) Type III IFNs are produced by and stimulate human plasmacytoid dendritic cells. J Immunol 189(6):2735–2745. doi:10.4049/jimmunol.1102038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Mathan TS, Figdor CG, Buschow SI (2013) Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 4:372. doi:10.3389/fimmu.2013.00372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Lozza L, Farinacci M, Fae K, Bechtle M, Staber M, Dorhoi A, Bauer M, Ganoza C, Weber S, Kaufmann SH (2014) Crosstalk between human DC subsets promotes antibacterial activity and CD8+ T-cell stimulation in response to bacille Calmette-Guerin. Eur J Immunol 44(1):80–92. doi:10.1002/eji.201343797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H, Lanzavecchia A, Colonna M (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5(8):919–923

    Article  CAS  PubMed  Google Scholar 

  104. Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C, Tindle S, Pypaert M, Freitas H, Piqueras B, Banchereau J, Palucka AK (2009) CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol 182(11):6815–6823. doi:10.4049/jimmunol.0802008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Osaki Y, Yokohama A, Saito A, Tahara K, Yanagisawa K, Ogawa Y, Ishizaki T, Mitsui T, Koiso H, Takizawa M, Uchiumi H, Saitoh T, Handa H, Murakami H, Tsukamoto N, Nojima Y (2013) Characterization of CD56+ dendritic-like cells: a normal counterpart of blastic plasmacytoid dendritic cell neoplasm? PLoS One 8(11):e81722. doi:10.1371/journal.pone.0081722

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Yu H, Zhang P, Yin X, Yin Z, Shi Q, Cui Y, Liu G, Wang S, Piccaluga P, Jiang T, Zhang L (2015) Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset. Protein Cell 6(4):297–306. doi:10.1007/s13238-015-0140-x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Tel J, Smits EL, Anguille S, Joshi RN, Figdor CG, de Vries IJM (2012) Human plasmacytoid dendritic cells are equipped with antigen-presenting and tumoricidal capacities. doi:10.1182/blood-2012-06-435941

  108. Shi Y, Wang E (2014) Blastic plasmacytoid dendritic cell neoplasm: a clinicopathologic review. Arch Pathol Lab Med 138(4):564–569. doi:10.5858/arpa.2013-0101-RS

    Article  PubMed  Google Scholar 

  109. Rauh MJ, Rahman F, Good D, Silverman J, Brennan MK, Dimov N, Liesveld J, Ryan DH, Richard Burack W, Bennett JM (2012) Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation, lacking cutaneous involvement: case series and literature review. Leuk Res 36(1):81–86. doi:10.1016/j.leukres.2011.07.033

  110. O’Keeffe M, Fancke B, Suter M, Ramm G, Clark J, Wu L, Hochrein H (2012) Nonplasmacytoid, high IFN-alpha-producing, bone marrow dendritic cells. J Immunol 188(8):3774–3783. doi:10.4049/jimmunol.1101365

    Article  PubMed  CAS  Google Scholar 

  111. Schlitzer A, Loschko J, Mair K, Vogelmann R, Henkel L, Einwachter H, Schiemann M, Niess JH, Reindl W, Krug A (2011) Identification of CCR9- murine plasmacytoid DC precursors with plasticity to differentiate into conventional DCs. Blood 117(24):6562–6570. doi:10.1182/blood-2010-12-326678

    Article  CAS  PubMed  Google Scholar 

  112. Fitzgerald-Bocarsly P, Jacobs ES (2010) Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol 87(4):609–620. doi:10.1189/jlb.0909635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Evans VA, Lal L, Akkina R, Solomon A, Wright E, Lewin SR, Cameron PU (2011) Thymic plasmacytoid dendritic cells are susceptible to productive HIV-1 infection and efficiently transfer R5 HIV-1 to thymocytes in vitro. Retrovirology 8:43. doi:10.1186/1742-4690-8-43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Stylianou E, Aukrust P, Bendtzen K, Muller F, Froland SS (2000) Interferons and interferon (IFN)-inducible protein 10 during highly active anti-retroviral therapy (HAART)-possible immunosuppressive role of IFN-alpha in HIV infection. Clin Exp Immunol 119(3):479–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Silvin A, Manel N (2015) Innate immune sensing of HIV infection. Curr Opin Immunol 32:54–60. doi:10.1016/j.coi.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  116. O’Brien M, Manches O, Bhardwaj N (2013) Plasmacytoid dendritic cells in HIV infection. In: Wu L, Schwartz O (eds) HIV interactions with dendritic cells, vol 762. Advances in experimental medicine and biology. Springer, New York, pp 71–107. doi:10.1007/978-1-4614-4433-6_3

  117. Loures FV, Rohm M, Lee CK, Santos E, Wang JP, Specht CA, Calich VL, Urban CF, Levitz SM (2015) Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog 11(2):e1004643. doi:10.1371/journal.ppat.1004643

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Sugimura T, Jounai K, Ohshio K, Tanaka T, Suwa M, Fujiwara D (2013) Immunomodulatory effect of Lactococcus lactis JCM5805 on human plasmacytoid dendritic cells. Clin Immunol 149 (3, Part B):509–518. doi:http://dx.doi.org/10.1016/j.clim.2013.10.007

  119. Michea P, Vargas P, Donnadieu M-H, Rosemblatt M, Bono MR, Duménil G, Soumelis V (2013) Epithelial control of the human pDC response to extracellular bacteria. Eur J Immunol 43(5):1264–1273. doi:10.1002/eji.201242990

    Article  CAS  PubMed  Google Scholar 

  120. Sisirak V, Vey N, Vanbervliet B, Duhen T, Puisieux I, Homey B, Bowman EP, Trinchieri G, Dubois B, Kaiserlian D, Lira SA, Puisieux A, Blay JY, Caux C, Bendriss-Vermare N (2011) CCR6/CCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epithelia after instruction in lymphoid tissues. Blood 118(19):5130–5140. doi:10.1182/blood-2010-07-295626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Ronnblom L, Pascual V (2008) The innate immune system in SLE: type I interferons and dendritic cells. Lupus 17(5):394–399. doi:10.1177/0961203308090020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301(1):5–8. doi:10.1056/NEJM197907053010102

    Article  CAS  PubMed  Google Scholar 

  123. Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD (2005) Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Investig 115(2):407–417. doi:10.1172/JCI23025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Theofilopoulos AN (2012) TLRs and IFNs: critical pieces of the autoimmunity puzzle. J Clin Investig 122(10):3464–3466. doi:10.1172/JCI63835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Lande R, Chamilos G, Ganguly D, Demaria O, Frasca L, Durr S, Conrad C, Schröder J, Gilliet M (2015) Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur J Immunol 45(1):203–213. doi:10.1002/eji.201344277

    Article  CAS  PubMed  Google Scholar 

  126. Prete F, Catucci M, Labrada M, Gobessi S, Castiello MC, Bonomi E, Aiuti A, Vermi W, Cancrini C, Metin A, Hambleton S, Bredius R, Notarangelo LD, van der Burg M, Kalinke U, Villa A, Benvenuti F (2013) Wiskott-Aldrich syndrome protein-mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells. J Exp Med 210(2):355–374. doi:10.1084/jem.20120363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Döring Y, Manthey HD, Drechsler M, Lievens D, Megens RTA, Soehnlein O, Busch M, Manca M, Koenen RR, Pelisek J, Daemen MJ, Lutgens E, Zenke M, Binder CJ, Weber C, Zernecke A (2012) Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125(13):1673–1683. doi:10.1161/circulationaha.111.046755

    Article  PubMed  CAS  Google Scholar 

  128. Laffont S, Rouquie N, Azar P, Seillet C, Plumas J, Aspord C, Guery JC (2014) X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-alpha production of plasmacytoid dendritic cells from women. J Immunol 193(11):5444–5452. doi:10.4049/jimmunol.1303400

    Article  CAS  PubMed  Google Scholar 

  129. Lambrecht BN (2008) Lung dendritic cells: targets for therapy in allergic disease. Curr Mol Med 8(5):393–400

    Article  CAS  PubMed  Google Scholar 

  130. Goubier A, Dubois B, Gheit H, Joubert G, Villard-Truc F, Asselin-Paturel C, Trinchieri G, Kaiserlian D (2008) Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29(3):464–475. doi:10.1016/j.immuni.2008.06.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Lombardi VC, Khaiboullina SF (2014) Plasmacytoid dendritic cells of the gut: relevance to immunity and pathology. Clin Immunol 153(1):165–177. doi:10.1016/j.clim.2014.04.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Rogers NM, Isenberg JS, Thomson AW (2013) Plasmacytoid dendritic cells: no longer an enigma and now key to transplant tolerance? Am J Transplant 13(5):1125–1133. doi:10.1111/ajt.12229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Fallarino F, Gizzi S, Mosci P, Grohmann U, Puccetti P (2007) Tryptophan catabolism in IDO+ plasmacytoid dendritic cells. Curr Drug Metab 8(3):209–216

    Article  CAS  PubMed  Google Scholar 

  134. Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F, Angeli V, Li Y, Boros P, Ding Y, Jessberger R, Trinchieri G, Lira SA, Randolph GJ, Bromberg JS (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7(6):652–662. doi:10.1038/ni1333

    Article  CAS  PubMed  Google Scholar 

  135. Hadeiba H, Sato T, Habtezion A, Oderup C, Pan J, Butcher EC (2008) CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nat Immunol 9(11):1253–1260. doi:10.1038/ni.1658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Chappell CP, Giltiay NV, Draves KE, Chen C, Hayden-Ledbetter MS, Shlomchik MJ, Kaplan DH, Clark EA (2014) Targeting antigens through blood dendritic cell antigen 2 on plasmacytoid dendritic cells promotes immunologic tolerance. J Immunol 192(12):5789–5801. doi:10.4049/jimmunol.1303259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Lombardi VC, Khaiboullina SF, Rizvanov AA (2015) Plasmacytoid dendritic cells, a role in neoplastic prevention and progression. Eur J Clin Invest 45:1–8. doi:10.1111/eci.12363

    Article  CAS  PubMed  Google Scholar 

  138. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118. doi:10.1084/jem.179.4.1109

    Article  CAS  PubMed  Google Scholar 

  139. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9(10):679–691. doi:10.1038/nri2622

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Zaba LC, Krueger JG, Lowes MA (2009) Resident and “inflammatory” dendritic cells in human skin. J Invest Dermatol 129(2):302–308. doi:10.1038/jid.2008.225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Banchereau J, Thompson-Snipes L, Zurawski S, Blanck JP, Cao Y, Clayton S, Gorvel JP, Zurawski G, Klechevsky E (2012) The differential production of cytokines by human Langerhans cells and dermal CD14(+) DCs controls CTL priming. Blood 119(24):5742–5749. doi:10.1182/blood-2011-08-371245

    Article  PubMed Central  PubMed  Google Scholar 

  142. Lindenberg JJ, Oosterhoff D, Sombroek CC, Lougheed SM, Hooijberg E, Stam AG, Santegoets SJ, Tijssen HJ, Buter J, Pinedo HM, van den Eertwegh AJ, Scheper RJ, Koenen HJ, van de Ven R, de Gruijl TD (2013) IL-10 conditioning of human skin affects the distribution of migratory dendritic cell subsets and functional T cell differentiation. PLoS One 8(7):e70237. doi:10.1371/journal.pone.0070237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Morelli AE, Rubin JP, Erdos G, Tkacheva OA, Mathers AR, Zahorchak AF, Thomson AW, Falo LD Jr, Larregina AT (2005) CD4+ T cell responses elicited by different subsets of human skin migratory dendritic cells. J Immunol 175(12):7905–7915 175/12/7905 [pii]

    Article  CAS  PubMed  Google Scholar 

  144. Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, Briere F, Chaussabel D, Zurawski G, Palucka AK, Reiter Y, Banchereau J, Ueno H (2008) Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29(3):497–510. doi:10.1016/j.immuni.2008.07.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, Poyner E, Green K, Dickinson R, Wang XN, Low D, Best K, Covins S, Milne P, Pagan S, Aljefri K, Windebank M, Miranda-Saavedra D, Larbi A, Wasan PS, Duan K, Poidinger M, Bigley V, Ginhoux F, Collin M, Haniffa M (2014) Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages. Immunity 41(3):465–477. doi:10.1016/j.immuni.2014.08.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, Zaba LC, Cardinale I, Nograles KE, Khatcherian A, Novitskaya I, Carucci JA, Bergman R, Krueger JG (2008) Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J Immunol 181(10):7420–7427 181/10/7420 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Jongbloed SL, Lebre MC, Fraser AR, Gracie JA, Sturrock RD, Tak PP, McInnes IB (2006) Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res Ther 8(1):R15. doi:10.1186/ar1864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Moret FM, Hack CE, van der Wurff-Jacobs KM, de Jager W, Radstake TR, Lafeber FP, van Roon JA (2013) Intra-articular CD1c-expressing myeloid dendritic cells from rheumatoid arthritis patients express a unique set of T cell-attracting chemokines and spontaneously induce Th1, Th17 and Th2 cell activity. Arthritis Res Ther 15(5):R155. doi:10.1186/ar4338

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Moret FM, Hack CE, van der Wurff-Jacobs KM, Radstake TR, Lafeber FP, van Roon JA (2014) Thymic stromal lymphopoietin, a novel proinflammatory mediator in rheumatoid arthritis that potently activates CD1c+ myeloid dendritic cells to attract and stimulate T cells. Arthritis Rheumatol 66(5):1176–1184. doi:10.1002/art.38338

    Article  CAS  PubMed  Google Scholar 

  150. Yawalkar N, Karlen S, Hunger R, Brand CU, Braathen LR (1998) Expression of interleukin-12 is increased in psoriatic skin. J Invest Dermatol 111(6):1053–1057. doi:10.1046/j.1523-1747.1998.00446.x

    Article  CAS  PubMed  Google Scholar 

  151. Yawalkar N, Tscharner GG, Hunger RE, Hassan AS (2009) Increased expression of IL-12p70 and IL-23 by multiple dendritic cell and macrophage subsets in plaque psoriasis. J Dermatol Sci 54(2):99–105. doi:10.1016/j.jdermsci.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  152. Globig AM, Hennecke N, Martin B, Seidl M, Ruf G, Hasselblatt P, Thimme R, Bengsch B (2014) Comprehensive intestinal T helper cell profiling reveals specific accumulation of IFN-gamma+IL-17+coproducing CD4+ T cells in active inflammatory bowel disease. Inflamm Bowel Dis 20(12):2321–2329. doi:10.1097/MIB.0000000000000210

    Article  PubMed  Google Scholar 

  153. Ramesh R, Kozhaya L, McKevitt K, Djuretic IM, Carlson TJ, Quintero MA, McCauley JL, Abreu MT, Unutmaz D, Sundrud MS (2014) Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J Exp Med 211(1):89–104. doi:10.1084/jem.20130301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Collin MP, Hart DN, Jackson GH, Cook G, Cavet J, Mackinnon S, Middleton PG, Dickinson AM (2006) The fate of human Langerhans cells in hematopoietic stem cell transplantation. J Exp Med 203(1):27–33. doi:10.1084/jem.20051787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Milne P, Bigley V, Gunawan M, Haniffa M, Collin M (2015) CD1c + blood dendritic cells have Langerhans cell potential. Blood 125(3):470–473. doi:10.1182/blood-2014-08-593582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Cunningham AL, Abendroth A, Jones C, Nasr N, Turville S (2010) Viruses and Langerhans cells. Immunol Cell Biol 88(4):416–423. doi:10.1038/icb.2010.42

    Article  PubMed  Google Scholar 

  157. Cao T, Ueno H, Glaser C, Fay JW, Palucka AK, Banchereau J (2007) Both Langerhans cells and interstitial DC cross-present melanoma antigens and efficiently activate antigen-specific CTL. Eur J Immunol 37(9):2657–2667. doi:10.1002/eji.200636499

    Article  CAS  PubMed  Google Scholar 

  158. Stoitzner P, Tripp CH, Eberhart A, Price KM, Jung JY, Bursch L, Ronchese F, Romani N (2006) Langerhans cells cross-present antigen derived from skin. Proc Natl Acad Sci USA 103(20):7783–7788. doi:10.1073/pnas.0509307103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR, Carbone FR (2003) Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science 301(5641):1925–1928. doi:10.1126/science.1087576

    Article  CAS  PubMed  Google Scholar 

  160. Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR (2008) Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319(5860):198–202. doi:10.1126/science.1151869

    Article  CAS  PubMed  Google Scholar 

  161. Balan S, Ollion V, Colletti N, Chelbi R, Montanana-Sanchis F, Liu H, Vu Manh TP, Sanchez C, Savoret J, Perrot I, Doffin AC, Fossum E, Bechlian D, Chabannon C, Bogen B, Asselin-Paturel C, Shaw M, Soos T, Caux C, Valladeau-Guilemond J, Dalod M (2014) Human XCR1+ dendritic cells derived in vitro from CD34+progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol 193(4):1622–1635. doi:10.4049/jimmunol.1401243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Segura E, Amigorena S (2013) Inflammatory dendritic cells in mice and humans. Trends Immunol 34(9):440–445. doi:10.1016/j.it.2013.06.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MOK and KJR are supported by National Health and Medical Research Council of Australia Fellowships (1077633 MOK and 10089896 KJR) and Project grants (1078987 and 1085934). KJR and MOK are also supported by Project Grants from Worldwide Cancer Research UK. WHM is supported by a University of Queensland UQI International postgraduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen J. Radford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Keeffe, M., Mok, W.H. & Radford, K.J. Human dendritic cell subsets and function in health and disease. Cell. Mol. Life Sci. 72, 4309–4325 (2015). https://doi.org/10.1007/s00018-015-2005-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2005-0

Keywords

Navigation