Skip to main content
Log in

Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Intratumoral hypoxia and hypoxia inducible factor-1α (HIF-1-α)-dependent CD39/CD73 ectoenzymes may govern the accumulation of tumor-protecting extracellular adenosine and signaling through A2A adenosine receptors (A2AR) in tumor microenvironments (TME). Here, we explored the conceptually novel motivation to use supplemental oxygen as a treatment to inhibit the hypoxia/HIF-1α-CD39/CD73-driven accumulation of extracellular adenosine in the TME in order to weaken the tumor protection. We report that hyperoxic breathing (60 % O2) decreased the TME hypoxia, as well as levels of HIF-1α and downstream target proteins of HIF-1α in the TME according to proteomic studies in mice. Importantly, oxygenation also downregulated the expression of adenosine-generating ectoenzymes and significantly lowered levels of tumor-protecting extracellular adenosine in the TME. Using supplemental oxygen as a tool in studies of the TME, we also identified FHL-1 as a potentially useful marker for the conversion of hypoxic into normoxic TME. Hyperoxic breathing resulted in the upregulation of antigen-presenting MHC class I molecules on tumor cells and in the better recognition and increased susceptibility to killing by tumor-reactive cytotoxic T cells. Therapeutic breathing of 60 % oxygen resulted in the significant inhibition of growth of established B16.F10 melanoma tumors and prolonged survival of mice. Taken together, the data presented here provide proof-of principle for the therapeutic potential of systemic oxygenation to convert the hypoxic, adenosine-rich and tumor-protecting TME into a normoxic and extracellular adenosine-poor TME that, in turn, may facilitate tumor regression. We propose to explore the combination of supplemental oxygen with existing immunotherapies of cancer.

Key messages

  • Oxygenation decreases levels of tumor protecting hypoxia.

  • Oxygenation decreases levels of tumor protecting extracellular adenosine.

  • Oxygenation decreases expression of HIF-1alpha dependent tumor-protecting proteins.

  • Oxygenation increases MHC class I expression and enables tumor regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP (2002) Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110:993–1002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Eltzschig HK, Sitkovsky MV, Robson SC (2013) Purinergic signaling during inflammation. N Engl J Med 368:1260

    CAS  PubMed  Google Scholar 

  4. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103(35):13132–13137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947–5952

    Article  CAS  PubMed  Google Scholar 

  6. Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, Rey S, Hammers H, Chang D, Pili R et al (2008) Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc Natl Acad Sci U S A 105:19579–19586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL (2009) Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci U S A 106:2353–2358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Feng L, Sun X, Csizmadia E, Han L, Bian S, Murakami T, Wang X, Robson SC, Wu Y (2011) Vascular CD39/ENTPD1 directly promotes tumor cell growth by scavenging extracellular adenosine triphosphate. Neoplasia 13:206–216

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ (2010) Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A 107:1547–1552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lukashev D, Ohta A, Sitkovsky M (2007) Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 26:273–279

    Article  CAS  PubMed  Google Scholar 

  12. Waickman AT, Alme A, Senaldi L, Zarek PE, Horton M, Powell JD (2012) Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor. Cancer Immunol Immunother 61:917–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Jin D, Fan J, Wang L, Thompson LF, Liu A, Daniel BJ, Shin T, Curiel TJ, Zhang B (2010) CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 70:2245–2255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, Stagg J (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 110:11091–11096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Thiel M, Chouker A, Ohta A, Jackson E, Caldwell C, Smith P, Lukashev D, Bittmann I, Sitkovsky MV (2005) Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol 3:e174

    Article  PubMed Central  PubMed  Google Scholar 

  16. Raleigh JA, Dewhirst MW, Thrall DE (1996) Measuring tumor hypoxia. Semin Radiat Oncol 6:37–45

    Article  PubMed  Google Scholar 

  17. Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JG, Semenza GL (2005) Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–669

    Article  CAS  PubMed  Google Scholar 

  18. Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM (2006) Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1α, HIF-2α, and other pathways. J Biol Chem 281:15215–15226

    Article  CAS  PubMed  Google Scholar 

  19. Semenza GL (2014) Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol 76:39–56

    Article  CAS  PubMed  Google Scholar 

  20. Hubbi ME, Gilkes DM, Baek JH, Semenza GL (2012) Four-and-a-half LIM domain proteins inhibit transactivation by hypoxia-inducible factor 1. J Biol Chem 287:6139–6149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Shen C, Kaelin WG Jr (2013) The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol 23:18–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chida M, Voelkel NF (1996) Effects of acute and chronic hypoxia on rat lung cyclooxygenase. Am J Physiol 270:L872–878

    CAS  PubMed  Google Scholar 

  23. Klein T, Shephard P, Kleinert H, Komhoff M (2007) Regulation of cyclooxygenase-2 expression by cyclic AMP. Biochim Biophys Acta 1773:1605–1618

    Article  CAS  PubMed  Google Scholar 

  24. Armstrong JM, Chen JF, Schwarzschild MA, Apasov S, Smith PT, Caldwell C, Chen P, Figler H, Sullivan G, Fink S et al (2001) Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-gene- deficient mice. Biochem J 354:123–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  CAS  PubMed  Google Scholar 

  26. Zhang B (2010) CD73: a novel target for cancer immunotherapy. Cancer Res 70:6407–6411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Busk M, Horsman MR (2013) Relevance of hypoxia in radiation oncology: pathophysiology, tumor biology and implications for treatment. Q J Nucl Med Mol Imaging 57:219–234

    CAS  PubMed  Google Scholar 

  28. Margaretten NC, Witschi H (1988) Effects of hyperoxia on growth characteristics of metastatic murine tumors in the lung. Cancer Res 48:2779–2783

    CAS  PubMed  Google Scholar 

  29. Ren J, Mi Z, Stewart NA, Jackson EK (2009) Identification and quantification of 2',3'-cAMP release by the kidney. J Pharmacol Exp Ther 328:855–865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Longhi MS, Robson SC, Bernstein SH, Serra S, Deaglio S (2013) Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states. J Mol Med (Berl) 91:165–172

    Article  CAS  Google Scholar 

  31. Huang Y, Goel S, Duda DG, Fukumura D, Jain RK (2013) Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 73:2943–2948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ohta A, Sitkovsky M (2006) Caveats in promising therapeutic targeting of the anti-inflammatory A2 adenosine receptors: the notes of caution. Discovery, Nature Reviews Drug

    Google Scholar 

  33. Aggarwal NR, D'Alessio FR, Eto Y, Chau E, Avalos C, Waickman AT, Garibaldi BT, Mock JR, Files DC, Sidhaye V et al (2013) Macrophage A2A adenosinergic receptor modulates oxygen-induced augmentation of murine lung injury. Am J Respir Cell Mol Biol 48:635–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nowak-Machen M, Schmelzle M, Hanidziar D, Junger W, Exley M, Otterbein L, Wu Y, Csizmadia E, Doherty G, Sitkovsky M et al (2013) Pulmonary natural killer T cells play an essential role in mediating hyperoxic acute lung injury. Am J Respir Cell Mol Biol 48:601–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sitkovsky MV, Paul WE (1988) Immunology. Global or directed exocytosis? Nature 332:306–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the funding from Northeastern University and NIH grants (PI: M.S.) R01 CA-111985; R01 GM-097320; R01 CA-112561; R21 AT 002788. We thank Dr. Richard Marsh, an expert in the field of energetics, kinematics, and kinetics for assistance with monitoring gas compositions in hyperoxia units.

Conflict of interest

The authors declare they have no competing interests as defined by Molecular Medicine or other interests that might be perceived to influence the results and discussion reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen M. Hatfield or Michail Sitkovsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2,396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatfield, S.M., Kjaergaard, J., Lukashev, D. et al. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection. J Mol Med 92, 1283–1292 (2014). https://doi.org/10.1007/s00109-014-1189-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1189-3

Keywords

Navigation