Skip to main content

Advertisement

Log in

NetMHCpan, a method for MHC class I binding prediction beyond humans

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Binding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.0, a method that generates quantitative predictions of the affinity of any peptide–MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 nM. The high performance of NetMHCpan-2.0 for non-human primates documents the method’s ability to provide broad allelic coverage also beyond human MHC molecules. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Brusic V, Rudy G, Harrison LC (1994) Prediction of MHC binding peptides using artificial neural networks. In: a. Y. X. Stonier RJ (ed) Complex systems: mechanism of adaptation. IOS, Amsterdam, pp 253–260

    Google Scholar 

  • Buus S, Lauemoller SL, Worning P, Kesmir C, Frimurer T, Corbet S, Fomsgaard A, Hilden J, Holm A, Brunak S (2003) Sensitive quantitative predictions of peptide–MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 62:378–384 doi:10.1034/j.1399-0039.2003.00112.x

    Article  PubMed  CAS  Google Scholar 

  • Clements CS, Kjer-Nielsen L, McCluskey J, Rossjohn J (2007) Structural studies on HLA-G: implications for ligand and receptor binding. Hum Immunol 68:220–226 doi:10.1016/j.humimm.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  • Diehl M, Munz C, Keilholz W, Stevanovic S, Holmes N, Loke YW, Rammensee HG (1996) Nonclassical HLA-G molecules are classical peptide presenters. Curr Biol 6:305–314 doi:10.1016/S0960-9822(02)00481-5

    Article  PubMed  CAS  Google Scholar 

  • Donnes P, Elofsson A (2002) Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3:25 doi:10.1186/1471-2105-3-25

    Article  PubMed  Google Scholar 

  • Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296 doi:10.1038/351290a0

    Article  PubMed  CAS  Google Scholar 

  • Ferre H, Ruffet E, Blicher T, Sylvester-Hvid C, Nielsen LL, Hobley TJ, Thomas OR, Buus S (2003) Purification of correctly oxidized MHC class I heavy-chain molecules under denaturing conditions: a novel strategy exploiting disulfide assisted protein folding. Protein Sci 12:551–559 doi:10.1110/ps.0233003

    Article  PubMed  CAS  Google Scholar 

  • Frahm N, Yusim K, Suscovich TJ, Adams S, Sidney J, Hraber P, Hewitt HS, Linde CH, Kavanagh DG, Woodberry T, Henry LM, Faircloth K, Listgarten J, Kadie C, Jojic N, Sango K, Brown NV, Pae E, Zaman MT, Bihl F, Khatri A, John M, Mallal S, Marincola FM, Walker BD, Sette A, Heckerman D, Korber BT, Brander C (2007) Extensive HLA class I allele promiscuity among viral CTL epitopes. Eur J Immunol 37:2419–2433 doi:10.1002/eji.200737365

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919 doi:10.1073/pnas.89.22.10915

    Article  PubMed  CAS  Google Scholar 

  • Hoof I, Kesmir C, Lund O, Nielsen M (2008) Humans with chimpanzee-like major histocompatibility complex-specificities control HIV-1 infection. AIDS 22:1299–1303

    Article  PubMed  CAS  Google Scholar 

  • Jacob L, Vert JP (2008) Efficient peptide–MHC-I binding prediction for alleles with few known binders. Bioinformatics 24:358–366 doi:10.1093/bioinformatics/btm611

    Article  PubMed  CAS  Google Scholar 

  • Jojic N, Reyes-Gomez M, Heckerman D, Kadie C, Schueler-Furman O (2006) Learning MHC I-peptide binding. Bioinformatics 22:e227–e235 doi:10.1093/bioinformatics/btl255

    Article  PubMed  CAS  Google Scholar 

  • Karl JA, Wiseman RW, Campbell KJ, Blasky AJ, Hughes AL, Ferguson B, Read DS, O’Connor DH (2008) Identification of MHC class I sequences in Chinese-origin rhesus macaques. Immunogenetics 60:37–46 doi:10.1007/s00251-007-0267-x

    Article  PubMed  CAS  Google Scholar 

  • Leisner C, Loeth N, Lamberth K, Justesen S, Sylvester-Hvid C, Schmidt EG, Claesson M, Buus S, Stryhn A (2008) One-pot, mix-and-read peptide–MHC tetramers. PLoS ONE 3:e1678

    Article  PubMed  CAS  Google Scholar 

  • Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res 36:W509–W512

    Article  PubMed  CAS  Google Scholar 

  • Mamitsuka H (1998) Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 33:460–474 doi:10.1002/(SICI)1097-0134(19981201)33:4<460::AID-PROT2>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  • Middleton D, Menchaca L, Rood H, Komerofsky R (2003) New allele frequency database: http://www.allelefrequencies.net. Tissue Antigens 61:403–407

    Article  PubMed  CAS  Google Scholar 

  • Moutaftsi M, Peters B, Pasquetto V, Tscharke DC, Sidney J, Bui HH, Grey H, Sette A (2006) A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol 24:817–819 doi:10.1038/nbt1215

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017 doi:10.1110/ps.0239403

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M, Lundegaard C, Worning P, Hvid CS, Lamberth K, Buus S, Brunak S, Lund O (2004) Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20:1388–1397 doi:10.1093/bioinformatics/bth100

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Roder G, Peters B, Sette A, Lund O, Buus S (2007) NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2:e796 doi:10.1371/journal.pone.0000796

    Article  PubMed  CAS  Google Scholar 

  • Nielsen M, Lundegaard C, Blicher T, Peters B, Sette A, Justesen S, Buus S, Lund O (2008) Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLOS Comput Biol 4:e1000107 doi:10.1371/journal.pcbi.1000107

    Article  PubMed  CAS  Google Scholar 

  • Pendley CJ, Becker EA, Karl JA, Blasky AJ, Wiseman RW, Hughes AL, O’Connor SL, O’Connor DH (2008) MHC class I characterization of Indonesian cynomolgus macaques. Immunogenetics 60:339–351 doi:10.1007/s00251-008-0292-4

    Article  PubMed  CAS  Google Scholar 

  • Perez CL, Larsen MV, Gustafsson R, Norstrom MM, Atlas A, Nixon DF, Nielsen M, Lund O, Karlsson AC (2008) Broadly immunogenic HLA class I supertype-restricted elite CTL epitopes recognized in a diverse population infected with different HIV-1 subtypes. J Immunol 180:5092–5100

    PubMed  CAS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219 doi:10.1007/s002510050595

    Article  PubMed  CAS  Google Scholar 

  • Rapin N, Hoof I, Lund O, Nielsen M (2008) MHC motif viewer. Immunogenetics, Sep 3 [Epub ahead of print]

  • Robinson J, Waller MJ, Parham P, Bodmer JG, Marsh SGE (2001) IMGT/HLA Database—a sequence database for the human major histocompatibility complex. Nucleic Acids Res 29:210–213 doi:10.1093/nar/29.1.210

    Article  PubMed  CAS  Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100 doi:10.1093/nar/18.20.6097

    Article  PubMed  CAS  Google Scholar 

  • Segal MR, Cummings MP, Hubbard AE (2001) Relating amino acid sequence to phenotype: analysis of peptide-binding data. Biometrics 57:632–642 doi:10.1111/j.0006-341X.2001.00632.x

    Article  PubMed  CAS  Google Scholar 

  • Sette A, Fleri W, Peters B, Sathiamurthy M, Bui HH, Wilson S (2005a) A roadmap for the immunomics of category A–C pathogens. Immunity 22:155–161 doi:10.1016/j.immuni.2005.01.009

    Article  PubMed  CAS  Google Scholar 

  • Sette A, Sidney J, Bui HH, del Guercio MF, Alexander J, Loffredo J, Watkins DI, Mothe BR (2005b) Characterization of the peptide-binding specificity of Mamu-A*11 results in the identification of SIV-derived epitopes and interspecies cross-reactivity. Immunogenetics 57:53–68 doi:10.1007/s00251-004-0749-z

    Article  PubMed  CAS  Google Scholar 

  • Sidney J, Asabe S, Peters B, Purton KA, Chung J, Pencille TJ, Purcell R, Walker CM, Chisari FV, Sette A (2006) Detailed characterization of the peptide binding specificity of five common Patr class I MHC molecules. Immunogenetics 58:559–570 doi:10.1007/s00251-006-0131-4

    Article  PubMed  CAS  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293 doi:10.1126/science.3287615

    Article  PubMed  CAS  Google Scholar 

  • Sylvester-Hvid C, Kristensen N, Blicher T, Ferre H, Lauemoller SL, Wolf XA, Lamberth K, Nissen MH, Pedersen LO, Buus S (2002) Establishment of a quantitative ELISA capable of determining peptide–MHC class I interaction. Tissue Antigens 59:251–258 doi:10.1034/j.1399-0039.2002.590402.x

    Article  PubMed  CAS  Google Scholar 

  • Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM, Kloetzel PM, Rammensee HG, Schild H, Holzhutter HG (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62:1025–1037 doi:10.1007/s00018-005-4528-2

    Article  PubMed  CAS  Google Scholar 

  • Thompson CB (1995) New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3:531–539 doi:10.1016/1074-7613(95)90124-8

    Article  PubMed  CAS  Google Scholar 

  • UniProt (2008) The universal protein resource (UniProt). Nucleic Acids Res 36:D190–D195 doi:10.1093/nar/gkn141

    Article  CAS  Google Scholar 

  • Watkins DI, Burton DR, Kallas EG, Moore JP, Koff WC (2008) Nonhuman primate models and the failure of the Merck HIV-1 vaccine in humans. Nat Med 14:617–621 doi:10.1038/nm.f.1759

    Article  PubMed  CAS  Google Scholar 

  • Yewdell JW, Bennink JR (1999) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17:51–88 doi:10.1146/annurev.immunol.17.1.51

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Petrovsky N, Schonbach C, Koh JY, Brusic V (2002) Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol Med 8:137–148

    PubMed  CAS  Google Scholar 

  • Zhang GL, Khan AM, Srinivasan KN, August JT, Brusic V (2005) MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res 33:W172–W179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the NIH (contracts HHSN266200400025C, HHSN266200400083C, and HHSN26620040006C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilka Hoof.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

(DOC 285 KB)

Supplementary Figure S2

(DOC 223 KB)

Supplemental tables

(XLS 109 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoof, I., Peters, B., Sidney, J. et al. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61, 1–13 (2009). https://doi.org/10.1007/s00251-008-0341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-008-0341-z

Keywords

Navigation