Skip to main content

Advertisement

Log in

Vaccination with p53-peptide–pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Peptides derived from over-expressed p53 protein are presented by class I MHC molecules and may act as tumour-associated epitopes. Due to the diversity of p53 mutations, immunogenic peptides representing wild-type sequences are preferable as a basis for a broad-spectrum p53-targeting cancer vaccine. Our preclinical studies have shown that wild-type p53-derived HLA-A2–binding peptides are able to activate human T cells and that the generated effector T cells are cytotoxic to human HLA-A2+, p53+ tumour cells. In this phase I pilot study, the toxicity and efficacy of autologous dendritic cells (DCs) loaded with a cocktail of three wild-type and three modified p53 peptides are being analysed in six HLA-A2+ patients with progressive advanced breast cancer. Vaccinations were well tolerated and no toxicity was observed. Disease stabilisation was seen in two of six patients, one patient had a transient regression of a single lymph node and one had a mixed response. ELISpot analyses showed that the p53-peptide–loaded DCs were able to induce specific T-cell responses against modified and unmodified p53 peptides in three patients, including two of the patients with a possible clinical benefit from the treatment. In conclusion, the strategy for p53-DC vaccination seems safe and without toxicity. Furthermore, indications of both immunologic and clinical effect were found in heavily pretreated patients with advanced breast cancer. An independent clinical effect of repeated administration of DCs and IL-2 can not of course be excluded; further studies are necessary to answer these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–h
Fig. 2
Fig. 3
Fig. 4
Fig. 5a, b

Similar content being viewed by others

References

  1. Alexander J, Fikes J, Hoffman S, Franke E, Sacci J, Appella E, Chisari FV, Guidotti LG, Chesnut RW, Livingston B, Sette A (1998) The optimization of helper T lymphocyte (HTL) function in vaccine development. Immunol Res 18:79

    CAS  PubMed  Google Scholar 

  2. Andersen MH, Gehl J, Reker S, Pedersen LO, Becker JC, Geertsen P, Straten PT (2003) Dynamic changes of specific T cell responses to melanoma correlate with IL-2 administration. Semin Cancer Biol (in press)

  3. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767

    CAS  PubMed  Google Scholar 

  4. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res 61:6451

    CAS  PubMed  Google Scholar 

  5. Barfoed AM, Petersen TR, Kirkin AF, thor SP, Claesson MH, Zeuthen J (2000) Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365–73 wild type peptide loaded on dendritic cells in vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein. Scand J Immunol 51:128

    Article  CAS  PubMed  Google Scholar 

  6. Chang F, Syrjanen S, Syrjanen K (1995) Implications of the p53 tumor-suppressor gene in clinical oncology. J Clin Oncol 13:1009

    CAS  PubMed  Google Scholar 

  7. Chariyalertsak S, Cheirsilpa A, Chindavijak K (1998) Prognostic importance of p53 and c-erbB-2 oncoproteins overexpression in patients with breast cancer. J Med Assoc Thai 81:698

    CAS  PubMed  Google Scholar 

  8. Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, Dorval T, Brichard V, Boon T (2001) A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci USA 98:10290

    CAS  PubMed  Google Scholar 

  9. De Vries IJ, Eggert AA, Scharenborg NM, Vissers JL, Lesterhuis WJ, Boerman OC, Punt CJ, Adema GJ, Figdor CG (2002) Phenotypical and functional characterization of clinical grade dendritic cells. J Immunother 25:429

    Article  PubMed  Google Scholar 

  10. Dhodapkar MV, Steinman RM (2002) Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 100:174

    Article  CAS  PubMed  Google Scholar 

  11. Eura M, Chikamatsu K, Katsura F, Obata A, Sobao Y, Takiguchi M, Song Y, Appella E, Whiteside TL, DeLeo AB (2000) A wild-type sequence p53 peptide presented by HLA-A24 induces cytotoxic T lymphocytes that recognize squamous cell carcinomas of the head and neck. Clin Cancer Res 6:979

    CAS  PubMed  Google Scholar 

  12. Feuerstein B, Berger TG, Maczek C, Roder C, Schreiner D, Hirsch U, Haendle I, Leisgang W, Glaser A, Kuss O, Diepgen TL, Schuler G, Schuler-Thurner B (2000) A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J Immunol Methods 245:15

    Article  CAS  PubMed  Google Scholar 

  13. Fong L, Engleman EG (2000) Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18:245

    CAS  PubMed  Google Scholar 

  14. Gnjatic S, Cai Z, Viguier M, Chouaib S, Guillet JG, Choppin J (1998) Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J Immunol 160:328

    PubMed  Google Scholar 

  15. Jager E, Ringhoffer M, Altmannsberger M, Arand M, Karbach J, Jager D, Oesch F, Knuth A (1997) Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Cancer 71:142

    Article  CAS  PubMed  Google Scholar 

  16. Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G, Hoffman E, Arand M, Old LJ, Knuth A (2000) Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 97:12198

    CAS  PubMed  Google Scholar 

  17. James K, Eisenhauer E, Christian M, Terenziani M, Vena D, Muldal A, Therasse P (1999) Measuring response in solid tumors: unidimensional versus bidimensional measurement. J Natl Cancer Inst 91:523

    Article  CAS  PubMed  Google Scholar 

  18. Lutzker SG, Lattime EC (2001) Use of dendritic cells to immunize against cancers overexpressing p53. Clin Cancer Res 7:2

    CAS  PubMed  Google Scholar 

  19. Mendez R, Serrano A, Jager E, Maleno I, Ruiz-Cabello F, Knuth A, Garrido F (2001) Analysis of HLA class I expression in different metastases from two melanoma patients undergoing peptide immunotherapy. Tissue Antigens 57:508

    Article  CAS  PubMed  Google Scholar 

  20. Nikitina EY, Clark JI, Van Beynen J, Chada S, Virmani AK, Carbone DP, Gabrilovich DI (2001) Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients. Clin Cancer Res 7:127

    CAS  PubMed  Google Scholar 

  21. O’Rourke MG, Johnson M, Lanagan C, See J, Yang J, Bell JR, Slater GJ, Kerr BM, Crowe B, Purdie DM, Elliott SL, Ellem KA, Schmidt CW (2003) Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother 52:387

    PubMed  Google Scholar 

  22. Petersen TR, Buus S, Brunak S, Nissen MH, Sherman LA, Claesson MH (2001) Identification and design of p53-derived HLA-A2-binding peptides with increased CTL immunogenicity. Scand J Immunol 53:357

    Article  CAS  PubMed  Google Scholar 

  23. Reid DC (2001) Dendritic cells and immunotherapy for malignant disease. Br J Haematol 112:874

    CAS  PubMed  Google Scholar 

  24. Ropke M, Hald J, Guldberg P, Zeuthen J, Norgaard L, Fugger L, Svejgaard A, Van der BS, Nijman HW, Melief CJ, Claesson MH (1996) Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide. Proc Natl Acad Sci USA 93:14704

    Article  CAS  PubMed  Google Scholar 

  25. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380

    CAS  PubMed  Google Scholar 

  26. Soussi T (2000) The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci 910:121

    CAS  PubMed  Google Scholar 

  27. Svane IM, Soot ML, Buus S, Johnsen HE (2003) Clinical application of dendritic cells in cancer vaccination therapy. APMIS 111:818

    Article  CAS  PubMed  Google Scholar 

  28. Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA (1995) Targeting p53 as a general tumor antigen. Proc Natl Acad Sci USA 92:11993

    CAS  PubMed  Google Scholar 

  29. Theobald M, Biggs J, Hernandez J, Lustgarten J, Labadie C, Sherman LA (1997) Tolerance to p53 by A2.1-restricted cytotoxic T lymphocytes. J Exp Med 185:833

    CAS  PubMed  Google Scholar 

  30. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205

    CAS  PubMed  Google Scholar 

  31. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den DP, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669

    CAS  PubMed  Google Scholar 

  32. Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223:1

    CAS  PubMed  Google Scholar 

  33. Vierboom MP, Zwaveling S, Bos GMJ, Ooms M, Krietemeijer GM, Melief CJ, Offringa R (2000) High steady-state levels of p53 are not a prerequisite for tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. Cancer Res 60:5508

    CAS  PubMed  Google Scholar 

  34. Wurtzen PA, Claesson MH (2002) A HLA-A2 restricted human CTL line recognizes a novel tumor cell expressed p53 epitope. Int J Cancer 99:568

    Article  CAS  PubMed  Google Scholar 

  35. Wurtzen PA, Pedersen LO, Poulsen HS, Claesson MH (2001) Specific killing of P53 mutated tumor cell lines by a cross-reactive human HLA-A2-restricted P53-specific CTL line. Int J Cancer 93:855

    Article  CAS  PubMed  Google Scholar 

  36. Zwaveling S, Vierboom MP, Ferreira Mota SC, Hendriks JA, Ooms ME, Sutmuller RP, Franken KL, Nijman HW, Ossendorp F, van der Burg SH, Offringa R, Melief CJ (2002) Antitumor efficacy of wild-type p53-specific CD4(+) T-helper cells. Cancer Res 62:6187

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Danish Cancer Research Foundation, The Danish Cancer Society, The Michaelsen Foundation and The Aase og Ejnar Danielsen’s Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Marie Svane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svane, I.M., Pedersen, A.E., Johnsen, H.E. et al. Vaccination with p53-peptide–pulsed dendritic cells, of patients with advanced breast cancer: report from a phase I study. Cancer Immunol Immunother 53, 633–641 (2004). https://doi.org/10.1007/s00262-003-0493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0493-5

Keywords

Navigation