Skip to main content

Advertisement

Log in

Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific CD8+ T cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Prostatic acid phosphatase (PAP) is a prostate cancer tumor antigen and a prostate-specific protein shared by rats and humans. Previous studies indicated that Copenhagen rats immunized with a recombinant vaccinia virus expressing human PAP (hPAP) developed PAP-specific cytotoxic T cells (CTL) with cross reactivity to rat PAP (rPAP) and evidence of prostate inflammation. Viral delivery of vaccine antigens is an active area of clinical investigation. However, a potential difficulty with viral-based immunizations is that immune responses elicited to the viral vector might limit the possibility of multiple immunizations. In this paper, we investigate the ability of another genetic immunization method, a DNA vaccine encoding PAP, to elicit antigen-specific CD8+ T cell immune responses. Specifically, Lewis rats were immunized with either a plasmid DNA-based (pTVG-HP) or vaccinia-based (VV-HP) vaccine each encoding hPAP. We determined that rats immunized with a DNA vaccine encoding hPAP developed a Th1-biased immune response as indicated by proliferating PAP-specific CD4+ and CD8+ cells and IFNγ production. Rats immunized with vaccinia virus encoding PAP did not develop a PAP-specific response unless boosted with a heterologous vaccination scheme. Most importantly, multiple immunizations with a DNA vaccine encoding the rat PAP homologue (pTVG-RP) could overcome peripheral self-tolerance against rPAP and generate a Th1-biased antigen-specific CD4+ and CD8+ T cell response. Overall, DNA vaccines provide a safe and effective method of generating prostate antigen-specific T cell responses. These findings support the investigation of PAP-specific DNA vaccines in human clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BrdU:

Bromodeoxyuridine

BSA:

Bovine serum albumin

CFA:

Complete Freund’s adjuvant

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cell

EDTA:

Ethylenediaminetetraacetic acid

ELISA:

Enzyme-linked immunosorbent assay

GFP:

Green fluorescent protein

GM-CSF:

Granulocyte macrophage colony-stimulating factor

hPAP:

Human prostatic acid phosphatase

IFA:

Incomplete Freund’s adjuvant

IFNγ:

Interferon-gamma

IgG:

Immunoglobulin G

IL-10:

Interleukin-10

MHC:

Major histocompatibility complex

MOI:

Multiplicity of infection

OD:

Optical density

PAP:

Prostatic acid phosphatase

PBS:

Phosphate buffered saline

pfu:

Plaque-forming unit

PHA:

Phytohemaglutinin

pTVG-HP:

DNA vaccine encoding hPAP

pTVG-RP:

DNA vaccine encoding rPAP

rPAP:

Rat prostatic acid phosphatase

SE:

Standard error

TMB:

Tetramethylbenzidine

VV-HP:

Recombinant vaccinia virus encoding hPAP

VVwt:

Wild type vaccinia virus

References

  1. McNeel DG (2005) Prostate cancer antigens and vaccines, preclinical developments. In: Giaccone G, Schilsky R, Sondel P (eds) Cancer chemotherapy biological response modifiers Elsevier, Amsterdam, pp 247–261

  2. Kaufman HL, Wang W, Manola J, DiPaola RS, Ko YJ, Sweeney C, Whiteside TL, Schlom J, Wilding G, Weiner LM (2004) Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J Clin Oncol 22:2122–2132

    Article  PubMed  CAS  Google Scholar 

  3. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24:3089–3094

    Article  PubMed  CAS  Google Scholar 

  4. Peshwa MV, Shi JD, Ruegg C, Laus R, van Schooten WC (1998) Induction of prostate tumor-specific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid phosphatase peptide. Prostate 36:129–138

    Article  PubMed  CAS  Google Scholar 

  5. McNeel DG, Nguyen LD, Disis ML (2001) Identification of T helper epitopes from prostatic acid phosphatase. Cancer Res 61:5161–5167

    PubMed  CAS  Google Scholar 

  6. McNeel DG, Nguyen LD, Ellis WJ, Higano CS, Lange PH, Disis ML (2001) Naturally occurring prostate cancer antigen-specific T cell responses of a Th1 phenotype can be detected in patients with prostate cancer. Prostate 47:222–229

    Article  PubMed  CAS  Google Scholar 

  7. Burch PA, Breen JK, Buckner JC, Gastineau DA, Kaur JA, Laus RL, Padley DJ, Peshwa MV, Pitot HC, Richardson RL, Smits BJ, Sopapan P, Strang G, Valone FH, Vuk-Pavlovic S (2000) Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clin Cancer Res 6:2175–2182

    PubMed  CAS  Google Scholar 

  8. Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH (2000) Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18:3894–3903

    PubMed  CAS  Google Scholar 

  9. Fong L, Brockstedt D, Benike C, Breen JK, Strang G, Ruegg CL, Engleman EG (2001) Dendritic Cell-Based Xenoantigen Vaccination for Prostate Cancer Immunotherapy. J Immunol 167:7150–7156

    PubMed  CAS  Google Scholar 

  10. Fong L, Ruegg CL, Brockstedt D, Engleman EG, Laus R (1997) Induction of tissue-specific autoimmune prostatitis with prostatic acid phosphatase immunization; implications for immunotherapy of prostate cancer. J Immunol 159:3113–3117

    PubMed  CAS  Google Scholar 

  11. Hodge JW, Schlom J, Donohue SJ, Tomaszewski JE, Wheeler CW, Levine BS, Gritz L, Panicali D, Kantor JA (1995) A recombinant vaccinia virus expressing human prostate-specific antigen (PSA): safety and immunogenicity in a non-human primate. Int J Cancer 63:231–237

    Article  PubMed  CAS  Google Scholar 

  12. Sanda MG, Smith DC, Charles LG, Hwang C, Pienta KJ, Schlom J, Milenic D, Panicali D, Montie JE (1999) Recombinant vaccinia-PSA (PROSTVAC) can induce a prostate-specific immune response in androgen-modulated human prostate cancer. Urology 53:260–266

    Article  PubMed  CAS  Google Scholar 

  13. Eder JP, Kantoff PW, Roper K, Xu GX, Bubley GJ, Boyden J, Gritz L, Mazzara G, Oh WK, Arlen P, Tsang KY, Panicali D, Schlom J, Kufe DW (2000) A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin Cancer Res 6:1632–1638

    PubMed  CAS  Google Scholar 

  14. Gulley J, Chen AP, Dahut W, Arlen PM, Bastian A, Steinberg SM, Tsang K, Panicali D, Poole D, Schlom J, Michael Hamilton J (2002) Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 53:109–117

    Article  PubMed  CAS  Google Scholar 

  15. Ciernik IF, Berzofsky JA, Carbone DP (1996) Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccines expressing single T cell epitopes. J Immunol 156:2369–2375

    PubMed  CAS  Google Scholar 

  16. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA (1997) DNA vaccines. Annu Rev Immunol 15:617–648

    Article  PubMed  CAS  Google Scholar 

  17. Johnson LE, Frye TP, Arnot AR, Marquette C, Couture LA, Gendron-Fitzpatrick A, McNeel DG (2006) Safety and immunological efficacy of a prostate cancer plasmid DNA vaccine encoding prostatic acid phosphatase (PAP). Vaccine 24:293–303

    Article  PubMed  CAS  Google Scholar 

  18. Chinnasamy D, Fairbairn LJ, Neuenfeldt J, Treisman JS, Hanson JP Jr, Margison GP, Chinnasamy N (2004) Lentivirus-mediated expression of mutant MGMTP140K protects human CD34+ cells against the combined toxicity of O6-benzylguanine and 1,3-bis(2-chloroethyl)-nitrosourea or temozolomide. Hum Gene Ther 15:758–769

    Article  PubMed  CAS  Google Scholar 

  19. Choe BK, Pontes EJ, Bloink S, Rose NR (1978) Human prostatic acid phosphatases: I. Isolation. Arch Androl 1:221–226

    PubMed  CAS  Google Scholar 

  20. McNeel DG, Nguyen LD, Storer BE, Vessella R, Lange PH, Disis ML (2000) Antibody immunity to prostate cancer-associated antigens can be detected in the serum of patients with prostate cancer. J Urol 164:1825–1829

    Article  PubMed  CAS  Google Scholar 

  21. McNeel DG, Malkovsky M (2005) Immune-based therapies for prostate cancer. Immunol Lett 96:3–9

    Article  PubMed  CAS  Google Scholar 

  22. Arlen PM, Gulley JL, Parker C, Skarupa L, Panicali D, Beetham P, Palena C, Tsang KY, Schlom J, Dahut W (2003) A pilot study of concurrent docetaxel plus PSA pox-vaccine versus vaccine alone in metastatic androgen independent prostate cancer (AIPC). Proc Am Soc Clin Oncol 22:1701

    Google Scholar 

  23. Corr M, Lee DJ, Carson DA, Tighe H (1996) Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med 184:1555–1560

    Article  PubMed  CAS  Google Scholar 

  24. Roy MJ, Wu MS, Barr LJ, Fuller JT, Tussey LG, Speller S, Culp J, Burkholder JK, Swain WF, Dixon RM, Widera G, Vessey R, King A, Ogg G, Gallimore A, Haynes JR, Heydenburg Fuller D (2000) Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 19:764–778

    Article  PubMed  CAS  Google Scholar 

  25. Wang R, Epstein J, Baraceros FM, Gorak EJ, Charoenvit Y, Carucci DJ, Hedstrom RC, Rahardjo N, Gay T, Hobart P, Stout R, Jones TR, Richie TL, Parker SE, Doolan DL, Norman J, Hoffman SL (2001) Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc Natl Acad Sci USA 98:10817–10822

    Article  PubMed  CAS  Google Scholar 

  26. Ramsay AJ, Kent SJ, Strugnell RA, Suhrbier A, Thomson SA, Ramshaw IA (1999) Genetic vaccination strategies for enhanced cellular, humoral and mucosal immunity. Immunol Rev 171:27–44

    Article  PubMed  CAS  Google Scholar 

  27. Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I, Georgiev G, Petrov S, Meryman HT (2000) Naked DNA and Adenoviral Immunizations for Immunotherapy of Prostate Cancer: a Phase I/II Clinical Trial. Eur Urol 38:208–217

    Article  PubMed  CAS  Google Scholar 

  28. Liu MA (2003) DNA vaccines: a review. J Intern Med 253:402–410

    Article  PubMed  CAS  Google Scholar 

  29. Zlotocha S, Staab MJ, Horvath D, Straus J, Dobratz J, Oliver K, Wasielewski S, Alberti D, Liu G, Wilding G, Eickhoff J, McNeel DG (2005) A phase I study of a DNA vaccine targeting prostatic Acid phosphatase in patients with stage D0 prostate cancer. Clin Genitourin Cancer 4:215–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported for L.E.J. by the DOD Prostate Cancer Research Program (W81XWH-04-1-0256) and for D.G.M. by NIH (K23 RR16489) and the DOD Prostate Cancer Research Program (DAMD17-03-1-0050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. McNeel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, L.E., Frye, T.P., Chinnasamy, N. et al. Plasmid DNA vaccine encoding prostatic acid phosphatase is effective in eliciting autologous antigen-specific CD8+ T cells. Cancer Immunol Immunother 56, 885–895 (2007). https://doi.org/10.1007/s00262-006-0241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0241-8

Keywords

Navigation