Skip to main content

Advertisement

Log in

Immune reconstitution prevents metastatic recurrence of murine osteosarcoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Primary tumors developing in immunocompetent hosts escape immunosurveillance by acquiring immune evasive properties. This raises the prospect that metastases derived from such tumors will also evade immunity. To investigate whether immune surveillance plays a role in preventing metastases, we studied a murine model which mimics the clinical progression of osteosarcoma: primary tumor growth in the lower extremity, amputation, minimal residual disease followed by the development of overt metastases. K7M2 implants readily escaped immune surveillance since normal BALB/c mice, T cell deficient SCID and T/NK cell deficient SCID-bg mice showed no difference in the rate of growth of primary osteosarcomas. However, both SCID and SCID-bg mice had higher rates of metastases than immunocompetent mice. Similarly, immune reconstitution following transfer of naive T cells to SCID or SCID-bg mice did not impact primary tumor growth, but significantly diminished metastatic recurrence. T cells in osteosarcoma bearing mice produced IFNγ in response to tumor and IFNγ production by immune reconstituting T cells was required to prevent metastases. These results demonstrate an important role for T cell based immune surveillance in preventing metastases, even when metastases develop from tumors that adeptly evade immunosurveillance. The results further suggest that T cell depleting cancer therapies may eliminate beneficial immune responses and that immune reconstitution of lymphopenic cancer patients could prevent metastatic recurrence of solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borrello I, Sotomayor EM, Rattis FM, Cooke SK, Gu L, Levitsky HI (2000) Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood 95:3011–3019

    PubMed  CAS  Google Scholar 

  2. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–575

    Article  PubMed  CAS  Google Scholar 

  3. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ (2002) Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 168:1356–1361

    PubMed  CAS  Google Scholar 

  4. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854. Epub 2002 Sep 19

    Google Scholar 

  5. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN (2002) T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 110:185–192

    Article  PubMed  CAS  Google Scholar 

  6. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  PubMed  CAS  Google Scholar 

  7. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  PubMed  CAS  Google Scholar 

  8. Ernst B, Lee DS, Chang JM, Sprent J, Surh CD (1999) The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11:173–181

    Article  PubMed  CAS  Google Scholar 

  9. Fidler IJ (2002) Critical determinants of metastasis. Semin Cancer Biol 12:89–96

    Article  PubMed  Google Scholar 

  10. Fry TJ, Mackall CL (2005) The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol 174:6571–6576

    PubMed  CAS  Google Scholar 

  11. Fry TJ, Christensen BL, Komschlies KL, Gress RE, Mackall CL (2001) Interleukin-7 restores immunity in athymic T-cell-depleted hosts. Blood 97:1525–1533

    Article  PubMed  CAS  Google Scholar 

  12. Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605–609

    Article  PubMed  CAS  Google Scholar 

  13. Gutman M, Singh RK, Xie K, Bucana CD, Fidler IJ (1995) Regulation of interleukin-8 expression in human melanoma cells by the organ environment. Cancer Res 55:2470–2475

    PubMed  CAS  Google Scholar 

  14. Hewitt HB, Blake ER, Walder AS (1976) A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br J Cancer 33:241–259

    PubMed  CAS  Google Scholar 

  15. Joao C, Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB, Gastineau DA, Markovic SN (2006) Early lymphocyte recovery after autologous stem cell transplantation predicts superior survival in mantle-cell lymphoma. Bone Marrow Transplant 37:865–871

    Article  PubMed  CAS  Google Scholar 

  16. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95:7556–61

    Article  PubMed  CAS  Google Scholar 

  17. Karulin AY, Hesse MD, Tary-Lehmann M, Lehmann PV (2000) Single-cytokine-producing CD4 memory cells predominate in type 1 and type 2 immunity. J Immunol 164:1862–1872

    PubMed  CAS  Google Scholar 

  18. Khanna C, Prehn J, Yeung C, Caylor J, Tsokos M, Helman L (2000) An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin Exp Metastasis 18:261–271

    Article  PubMed  CAS  Google Scholar 

  19. Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L (2001) Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 61:3750–3759

    PubMed  CAS  Google Scholar 

  20. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10:182–186

    Article  PubMed  CAS  Google Scholar 

  21. Klein G, Klein E (1977) Immune surveillance against virus-induced tumors and nonrejectability of spontaneous tumors: contrasting consequences of host versus tumor evolution. Proc Natl Acad Sci U S A 74:2121–2125

    Article  PubMed  CAS  Google Scholar 

  22. Mackall CL, Fleisher TA, Brown MR, Magrath IT, Shad AT, Horowitz ME, Wexler LH, Adde MA, McClure LL, Gress RE (1994) Lymphocyte depletion during treatment with intensive chemotherapy for cancer. Blood 84:2221–2228

    PubMed  CAS  Google Scholar 

  23. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  PubMed  CAS  Google Scholar 

  24. Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6:449–458

    Article  PubMed  CAS  Google Scholar 

  25. Morelli AE, Zahorchak AF, Larregina AT, Colvin BL, Logar AJ, Takayama T, Falo LD, Thomson AW (2001) Cytokine production by mouse myeloid dendritic cells in relation to differentiation and terminal maturation induced by lipopolysaccharide or CD40 ligation. Blood 98:1512–1523

    Article  PubMed  CAS  Google Scholar 

  26. Pardoll D (2001) T cells and tumours. Nature 411:1010–1012

    Article  PubMed  CAS  Google Scholar 

  27. Porrata LF, Ingle JN, Litzow MR, Geyer S, Markovic SN (2001) Prolonged survival associated with early lymphocyte recovery after autologous hematopoietic stem cell transplantation for patients with metastatic breast cancer. Bone Marrow Transplant 28:865–871

    Article  PubMed  CAS  Google Scholar 

  28. Porrata LF, Litzow MR, Tefferi A, Letendre L, Kumar S, Geyer SM, Markovic SN (2002) Early lymphocyte recovery is a predictive factor for prolonged survival after autologous hematopoietic stem cell transplantation for acute myelogenous leukemia. Leukemia 16:1311–1318

    Article  PubMed  CAS  Google Scholar 

  29. Porrata LF, Inwards DJ, Micallef IN, Ansell SM, Geyer SM, Markovic SN (2002) Early lymphocyte recovery post-autologous haematopoietic stem cell transplantation is associated with better survival in Hodgkin’s disease. Br J Haematol 117:629–633

    Article  PubMed  Google Scholar 

  30. Porrata LF, Gertz MA, Geyer SM, Litzow MR, Gastineau DA, Moore SB, Pineda AA, Bundy KL, Padley DJ, Persky D, Lacy MQ, Dispenzieri A, Snow DS, Markovic SN (2004) The dose of infused lymphocytes in the autograft directly correlates with clinical outcome after autologous peripheral blood hematopoietic stem cell transplantation in multiple myeloma. Leukemia 18:1085–1092

    Article  PubMed  CAS  Google Scholar 

  31. Porrata LF, Litzow MR, Inwards DJ, Gastineau DA, Moore SB, Pineda AA, Bundy KL, Padley DJ, Persky D, Ansell SM, Micallef IN, Markovic SN (2004) Infused peripheral blood autograft absolute lymphocyte count correlates with day 15 absolute lymphocyte count and clinical outcome after autologous peripheral hematopoietic stem cell transplantation in non-Hodgkin’s lymphoma. Bone Marrow Transplant 33:291–298

    Article  PubMed  CAS  Google Scholar 

  32. Schnurr M, Galambos P, Scholz C, Then F, Dauer M, Endres S, Eigler A (2001) Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines. Cancer Res 61:6445–6450

    PubMed  CAS  Google Scholar 

  33. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  PubMed  CAS  Google Scholar 

  34. Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawano T, Pelikan SB, Crowe NY, Godfrey DI (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668

    Article  PubMed  CAS  Google Scholar 

  35. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197

    Article  PubMed  CAS  Google Scholar 

  36. Street SE, Trapani JA, MacGregor D, Smyth MJ (2002) Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196:129–134

    Article  PubMed  CAS  Google Scholar 

  37. Street SE, Hayakawa Y, Zhan Y, Lew AM, MacGregor D, Jamieson AM, Diefenbach A, Yagita H, Godfrey DI, Smyth MJ (2004) Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199:879–884

    Article  PubMed  CAS  Google Scholar 

  38. van Dale P, Galand P (1988) Effect of partial hepatectomy on experimental liver invasion by intraportally injected colon carcinoma cells in rats. Invasion Metastasis 8:217–227

    PubMed  Google Scholar 

  39. van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H (1996) Decreased tumor surveillance in perforin-deficient mice. J Exp Med 184:1781–1790

    Article  PubMed  Google Scholar 

  40. van Duijnhoven FH, Aalbers RI, Rothbarth J, Terpstra OT, Kuppen PJ (2004) A systemic antitumor immune response prevents outgrowth of lung tumors after i.v. rechallenge but is not able to prevent growth of experimental liver tumors. Clin Exp Metastasis 21:13–18

    Article  PubMed  Google Scholar 

  41. Wan X, Mendoza A, Khanna C, Helman LJ (2005) Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 65:2406–2411

    Article  PubMed  CAS  Google Scholar 

  42. Yang X, Chu Y, Wang Y, Guo Q, Xiong S (2006) Vaccination with IFN-inducible T cell alpha chemoattractant (ITAC) gene-modified tumor cell attenuates disseminated metastases of circulating tumor cells. Vaccine 24:2966–2974

    Article  PubMed  CAS  Google Scholar 

  43. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10:175–181

    Article  PubMed  CAS  Google Scholar 

  44. Zhang H, Chua KS, Guimond M, Kapoor V, Brown MV, Fleisher TA, Long LM, Bernstein D, Hill BJ, Douek DC, Berzofsky JA, Carter CS, Read EJ, Helman LJ, Mackall CL (2005) Lymphopenia and interleukin-2 therapy alter homeostasis of CD4 + CD25 + regulatory T cells. Nat Med 11:1238–1243

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Jon Wigginton for kindly providing the IFNγ deficient mice. This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crystal L. Mackall.

Additional information

By acceptance of this article, the publisher or recipient acknowledges right of the U.S. Government to retain a nonexclusive, royalty-free license in and to any copyright covering the article.

The contents of this publication do not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. Animal care was provided in accordance with procedures outlined in the “Guide for the Care and Use of Laboratory Animals” (NIH Pub. No. 86-23, 1996). This project was funded in whole or part with funds from the National Cancer Institute, National Institutes of Health, under Contract No. NO1-CO-56000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchant, M.S., Melchionda, F., Sinha, M. et al. Immune reconstitution prevents metastatic recurrence of murine osteosarcoma. Cancer Immunol Immunother 56, 1037–1046 (2007). https://doi.org/10.1007/s00262-006-0257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0257-0

Keywords

Navigation