Skip to main content

Advertisement

Log in

Immunological tumor destruction in a murine melanoma model by targeted LTα independent of secondary lymphoid tissue

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

We previously demonstrated that targeting lymphotoxin α (LTα) to the tumor evokes its immunological destruction in a syngeneic B16 melanoma model. Since treatment was associated with the induction of peritumoral tertiary lymphoid tissue, we speculated that the induced immune response was initiated at the tumor site.

Methods and results

In order to directly test this notion, we analyzed the efficacy of tumor targeted LTα in LTα knock-out (LTα−/−) mice which lack peripheral lymph nodes. To this end, we demonstrate that tumor-targeted LTα mediates the induction of specific T-cell responses even in the absence of secondary lymphoid organs. In addition, this effect is accompanied by the initiation of tertiary lymphoid tissue at the tumor site in which B and T lymphocytes are compartmentalized in defined areas and which harbor expanded numbers of tumor specific T cells as demonstrated by in situ TRP-2/Kb tetramer staining. Mechanistically, targeted LTα therapy seems to induce changes at the tumor site which allows a coordinated interaction of immune competent cells triggering the induction of tertiary lymphoid tissue.

Conclusion

Thus, our data demonstrate that targeted LTα promotes an accelerated immune response by enabling the priming of T cells at the tumor site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APCs:

Antigen presenting cells

HEV:

High endothelial venules

LTα:

Lymphotoxin α

LTα−/− :

LTα knock-out

LTβR:

LTβ receptor

sLTα:

Soluble lymphotoxin α

References

  1. Agyekum S, Church A, Sohail M, Krausz T, Van Noorden S, Polak J, Cohen J (2003) Expression of lymphotoxin-beta (LT-beta) in chronic inflammatory conditions. J Pathol 199:115–121

    Article  PubMed  CAS  Google Scholar 

  2. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217

    Article  PubMed  CAS  Google Scholar 

  3. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  4. Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725

    Article  PubMed  CAS  Google Scholar 

  5. Caux C, Vanbervliet B, Massacrier C, Ait-Yahia S, Vaure C, Chemin K, Dieu-Nosjean M, Vicari A (2002) Regulation of dendritic cell recruitment by chemokines. Transplantation 73:S7–S11

    Article  PubMed  CAS  Google Scholar 

  6. Cupedo T, Mebius RE (2005) Cellular interactions in lymph node development. J Immunol 174:21–25

    PubMed  CAS  Google Scholar 

  7. Cyster JG (1999) Chemokines and cell migration in secondary lymphoid organs. Science 286:2098–2102

    Article  PubMed  CAS  Google Scholar 

  8. Davis IA, Knight KA, Rouse BT (1998) The spleen and organized lymph nodes are not essential for the development of gut-induced mucosal immune responses in lymphotoxin-alpha deficient mice. Clin Immunol Immunopathol 89:150–159

    Article  PubMed  CAS  Google Scholar 

  9. Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7:344–353

    Article  PubMed  CAS  Google Scholar 

  10. Fan L, Reilly CR, Luo Y, Dorf ME, Lo D (2000) Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J Immunol 164:3955–3959

    PubMed  CAS  Google Scholar 

  11. Finke D (2005) Fate and function of lymphoid tissue inducer cells. Curr Opin Immunol 17:144–150

    Article  PubMed  CAS  Google Scholar 

  12. Fu YX, Chaplin DD (1999) Development and maturation of secondary lymphoid tissues. Annu Rev Immunol 17:399–433

    Article  PubMed  CAS  Google Scholar 

  13. Futterer A, Mink K, Luz A, Kosco-Vilbois MH, Pfeffer K (1998) The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9:59–70

    Article  PubMed  CAS  Google Scholar 

  14. Gillies SD, Young D, Lo KM, Foley SF, Reisfeld RA (1991) Expression of genetically engineered immunoconjugates of lymphotoxin and a chimeric anti-ganglioside GD2 antibody. Hybridoma 10:347–356

    Article  PubMed  CAS  Google Scholar 

  15. Gillies SD, Young D, Lo KM, Roberts S (1993) Biological activity and in vivo clearance of antitumor antibody/cytokine fusion proteins. Bioconjug Chem 4:230–235

    Article  PubMed  CAS  Google Scholar 

  16. Haanen JB, Toebes M, Cordaro TA, Wolkers MC, Kruisbeek AM, Schumacher TN (1999) Systemic T cell expansion during localized viral infection. Eur J Immunol 29:1168–1174

    Article  PubMed  CAS  Google Scholar 

  17. Haanen JB, van Oijen MG, Tirion F, Oomen LC, Kruisbeek AM, Vyth-Dreese FA, Schumacher TN (2000) In situ detection of virus- and tumor-specific T-cell immunity. Nat Med 6:1056–1060

    Article  PubMed  CAS  Google Scholar 

  18. Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H (1994) Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8- sialyltransferase cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci USA 91:10455–10459

    Article  PubMed  CAS  Google Scholar 

  19. Hjelmstrom P, Fjell J, Nakagawa T, Sacca R, Cuff CA, Ruddle NH (2000) Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am J Pathol 156:1133–1138

    PubMed  CAS  Google Scholar 

  20. Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, Tamechika M, Yamaguchi K, Fukumoto T, Chiba T, Nishikawa SI (2001) Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med 193:621–630

    Article  PubMed  CAS  Google Scholar 

  21. Iizuka K, Chaplin DD, Wang Y, Wu Q, Pegg LE, Yokoyama WM, Fu YX (1999) Requirement for membrane lymphotoxin in natural killer cell development. Proc Natl Acad Sci USA 96:6336–6340

    Article  PubMed  CAS  Google Scholar 

  22. Kim HJ, Kammertoens T, Janke M, Schmetzer O, Qin Z, Berek C, Blankenstein T (2004) Establishment of early lymphoid organ infrastructure in transplanted tumors mediated by local production of lymphotoxin alpha and in the combined absence of functional B and T cells. J Immunol 172:4037–4047

    PubMed  CAS  Google Scholar 

  23. Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA (1997) Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 6:491–500

    Article  PubMed  CAS  Google Scholar 

  24. Kratz A, Campos-Neto A, Hanson MS, Ruddle NH (1996) Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med 183:1461–1472

    Article  PubMed  CAS  Google Scholar 

  25. Lee BJ, Santee S, Von Gesjen S, Ware CF, Sarawar SR (2000) Lymphotoxin-alpha-deficient mice can clear a productive infection with murine gammaherpesvirus 68 but fail to develop splenomegaly or lymphocytosis. J Virol 74:2786–2792

    Article  PubMed  CAS  Google Scholar 

  26. Lee Y, Chin RK, Christiansen P, Sun Y, Tumanov AV, Wang J, Chervonsky AV, Fu YX (2006) Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity 25:499–509

    Article  PubMed  CAS  Google Scholar 

  27. Lu TT, Cyster JG (2002) Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297:409–412

    Article  PubMed  CAS  Google Scholar 

  28. Lund FE, Partida-Sanchez S, Lee BO, Kusser KL, Hartson L, Hogan RJ, Woodland DL, Randall TD (2002) Lymphotoxin-alpha-deficient mice make delayed, but effective, T and B cell responses to influenza. J Immunol 169:5236–5243

    PubMed  Google Scholar 

  29. Luther SA, Bidgol A, Hargreaves DC, Schmidt A, Xu Y, Paniyadi J, Matloubian M, Cyster JG (2002) Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169:424–433

    PubMed  CAS  Google Scholar 

  30. Matsumoto M, Iwamasa K, Rennert PD, Yamada T, Suzuki R, Matsushima A, Okabe M, Fujita S, Yokoyama M (1999) Involvement of distinct cellular compartments in the abnormal lymphoid organogenesis in lymphotoxin-alpha-deficient mice and alymphoplasia (aly) mice defined by the chimeric analysis. J Immunol 163:1584–1591

    PubMed  CAS  Google Scholar 

  31. Matsushima A, Kaisho T, Rennert PD, Nakano H, Kurosawa K, Uchida D, Takeda K, Akira S, Matsumoto M (2001) Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J Exp Med 193:631–636

    Article  PubMed  CAS  Google Scholar 

  32. Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, Woodland DL, Lund FE, Randall TD (2004) Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10:927–934

    Article  PubMed  CAS  Google Scholar 

  33. Muller G, Lipp M (2003) Concerted action of the chemokine and lymphotoxin system in secondary lymphoid-organ development. Curr Opin Immunol 15:217–224

    Article  PubMed  CAS  Google Scholar 

  34. Nasr IW, Reel M, Oberbarnscheidt MH, Mounzer RH, Baddoura FK, Ruddle NH, Lakkis FG (2007) Tertiary lymphoid tissues generate effector and memory T cells that lead to allograft rejection. Am J Transpl 7:1071–1079

    Article  CAS  Google Scholar 

  35. Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS, Cooper MD, Browning JL, Sedgwick JD, Cyster JG (1999) Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 189:403–412

    Article  PubMed  CAS  Google Scholar 

  36. Nishikawa S, Honda K, Vieira P, Yoshida H (2003) Organogenesis of peripheral lymphoid organs. Immunol Rev 195:72–80

    Article  PubMed  CAS  Google Scholar 

  37. Oehen S, Brduscha-Riem K (1998) Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J Immunol 161:5338–5346

    PubMed  CAS  Google Scholar 

  38. Reisfeld RA, Gillies SD, Mendelsohn J, Varki NM, Becker JC (1996) Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody-lymphotoxin fusion protein. Cancer Res 56:1707–1712

    PubMed  CAS  Google Scholar 

  39. Schrama D, Pedersen LO, Keikavoussi P, Andersen MH, thor Straten P, Brocker EB, Kampgen E, Becker JC (2002) Aggregation of antigen-specific T cells at the inoculation site of mature dendritic cells. J Invest Dermatol 119:1443–1448

    Article  PubMed  CAS  Google Scholar 

  40. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  PubMed  CAS  Google Scholar 

  41. Schrama D, thor Straten P, Fischer WH, McLellan AD, Bröcker EB, Reisfeld RA, Becker JC (2001) Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14:111–121

    Article  PubMed  CAS  Google Scholar 

  42. Schrama D, Voigt H, Eggert AO, Xiang R, Reisfeld RA, Becker JC (2005) Therapeutic efficacy of tumor-targeted IL2 in LTalpha(-/-) mice depends on conditioned T cells. Cancer Immunol Immunother 55:861–866

    Article  PubMed  CAS  Google Scholar 

  43. Schrama D, Xiang R, Eggert AO, Andersen MH, Pedersen Ls LO, Kampgen E, Schumacher TN, Reisfeld RR, Becker JC (2004) Shift from systemic to site-specific memory by tumor-targeted IL-2. J Immunol 172:5843–5850

    PubMed  CAS  Google Scholar 

  44. Suematsu S, Watanabe T (2004) Generation of a synthetic lymphoid tissue-like organoid in mice. Nat Biotechnol 22:1539–1545

    Article  PubMed  CAS  Google Scholar 

  45. Suresh M, Lanier G, Large MK, Whitmire JK, Altman JD, Ruddle NH, Ahmed R (2002) Role of lymphotoxin alpha in T-cell responses during an acute viral infection. J Virol 76:3943–3951

    Article  PubMed  CAS  Google Scholar 

  46. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, Goronzy JJ, Weyand CM (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167:1072–1080

    PubMed  CAS  Google Scholar 

  47. thor Straten P, Guldberg P, Seremet T, Reisfeld RA, Zeuthen J, Becker JC (1998) Activation of preexisting T cell clones by targeted interleukin 2 therapy. Proc Natl Acad Sci USA 95:8785–8790

    Article  CAS  Google Scholar 

  48. Voigt H, Schrama D, Eggert AO, Vetter CS, Muller-Blech K, Reichardt HM, Andersen MH, Becker JC, Luhder F (2006) CD28-mediated costimulation impacts on the differentiation of DC vaccination-induced T cell responses. Clin Exp Immunol 143:93–102

    Article  PubMed  CAS  Google Scholar 

  49. Ware CF (2005) Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 23:787–819

    Article  PubMed  CAS  Google Scholar 

  50. Young AC, Zhang W, Sacchettini JC, Nathenson SG (1994) The three-dimensional structure of H-2Db at 2.4 A resolution: implications for antigen-determinant selection. Cell 76:39–50

    Article  PubMed  CAS  Google Scholar 

  51. Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5:141–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Carrie Dolman, Eva Baumann, Katrin Mueller-Blech and Claudia Siedel for excellent technical assistance; Susan Schellworth for animal care. This work was supported by Deutsche Forschungsgemeinschaft grant Be 1394/5-2 and grant SFP1330 from EMD-Lexigen Research Center, Bedford, MA. (R.X., R.A.R.). D. S. was supported by the Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Schrama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrama, D., Voigt, H., Eggert, A.O. et al. Immunological tumor destruction in a murine melanoma model by targeted LTα independent of secondary lymphoid tissue. Cancer Immunol Immunother 57, 85–95 (2008). https://doi.org/10.1007/s00262-007-0352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0352-x

Keywords

Navigation