Skip to main content

Advertisement

Log in

Phase-I study of Innacell γδ™, an autologous cell-therapy product highly enriched in γ9δ2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

γ9δ2 T lymphocytes have been shown to be directly cytotoxic against renal carcinoma cells. Lymphocytes T γδ can be selectively expanded in vivo with BrHPP (IPH1101, Phosphostim) and interleukin 2 (IL-2). A phase I Study was conducted in patients with metastatic renal cell carcinoma (mRCC) to determine the maximum-tolerated dose and safety of Innacell γδ™, an autologous cell-therapy product based on γ9δ2 T lymphocytes, in patients with mRCC.

Experimental design

A 1-h intravenous infusion of γ9δ2 T lymphocytes was administered alone during treatment cycle 1 and combined with a low dose of subcutaneous interleukin-2 (IL-2, 2 MIU/m2 from Day 1 to Day 7) in the two subsequent cycles (at 3-week intervals). The dose of γ9δ2 T lymphocytes was escalated from 1 up to 8 × 109 cells.

Results

Ten patients underwent a total of 27 treatment cycles. Immunomonitoring data demonstrate that γ9δ2 T lymphocytes are initially cleared from the blood to reappear at the end of IL-2 administration. Dose-limiting toxicity occurred in one patient at the dose of 8 × 109 cells (disseminated intravascular coagulation). Other treatment-related adverse events (AEs) included mainly gastrointestinal disorders and flu-like symptoms (fatigue, pyrexia, rigors). Hypotension and tachycardia also occurred, especially with co-administered IL-2. Six patients showed stabilized disease. Time to progression was 25.7 weeks.

Conclusion

The data collected in ten patients with mRCC indicate that repeated infusions of Innacell γδ™ at different dose levels (up to 8 × 109 total cells), either alone or with IL-2 is well tolerated. These results are in favor of the therapeutic value of cell therapy with Innacell γδ™ for the treatment of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Atkins M, Regan M, McDermott D, Mier J, Stanbridge E, Youmans A, Febbo P, Upton M, Lechpammer M, Signoretti S (2005) Carbonic anhydrase IX expression predicts outcome of interleukin-2 therapy for renal cancer. Clin Cancer Res 11:3714–21

    Article  PubMed  CAS  Google Scholar 

  2. Bukowski RM (2001) Cytokine therapy for metastatic renal cell carcinoma. Semin Urol Oncol 19:148–54

    PubMed  CAS  Google Scholar 

  3. Common Toxicity Criteria (CTC) (1999) Cancer Therapy Evaluation Program. Common Toxicity Criteria, version 2.0. DCTD, NCI, NIH, DHHS

  4. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, Negrier S, Chevreau C, Solska E, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Freeman S, Schwartz B, Shan M, Simantov R, Bukowski RM; TARGET Study Group (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    Article  PubMed  CAS  Google Scholar 

  5. Espinosa E, Belmant C, Pont F, Luciani B, Poupot R, Romagné F, Brailly H, Bonneville M, Fournié JJ (2001) Chemical synthesis and biological activity of bromohydrin pyrophosphate, a potent stimulator of human γδ T cells. J Biol Chem 276:18337–18344

    Article  PubMed  CAS  Google Scholar 

  6. Kato Y, Tanaka Y, Miyagawa F, Yamashita S, Minato N (2001) Targeting of tumor cells for human γδ T cells by nonpeptide antigens. J Immunol 167:5092–5098

    PubMed  CAS  Google Scholar 

  7. Kobayashi H, Tanaka Y, Yagi J, Toma H, Uchiyama T (2001) Gamma/delta T cells provide innate immunity against renal cell carcinoma. Cancer Immunol Immunother 50:115–124

    Article  PubMed  CAS  Google Scholar 

  8. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H (2006) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56:469–476

    Article  PubMed  CAS  Google Scholar 

  9. Medical Research Council Renal Cancer Collaborators (1999) Interferon-α and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Lancet 353:14–17

    Article  Google Scholar 

  10. Motzer RJ, Mazumdar M, Bacik J, Berg W, Amsterdam A, Ferrara J (1999) Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 17:2530–2540

    PubMed  CAS  Google Scholar 

  11. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  PubMed  CAS  Google Scholar 

  12. Negrier S, Escudier B, Lasset C, Douillard JY, Savary J, Chevreau C, Ravaud A, Mercatello A, Peny J, Mousseau M, Philip T, Tursz T (1998) Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. N Engl J Med 338:1272–1278

    Article  PubMed  CAS  Google Scholar 

  13. Poccia F, Boullier S, Lecoeur H, Cochet M, Poquet Y, Colizzi V, Fournie JJ, Gougeon ML (1996) Peripheral V gamma 9/V delta 2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. J Immunol 157:449–461

    PubMed  CAS  Google Scholar 

  14. Pyrhönen S, Ellmén J, Vuorinen J, Gershanovich M, Tominaga T, Kaufmann M, Hayes DF (1999) Prospective randomized trial of interferonalfa-2a plus vinblastine versus vinblastine alone in patients with advanced renal cell cancer. J Clin Oncol 17:2859–2867

    PubMed  Google Scholar 

  15. Reddy GK, Bukowski RM (2006) Sorafenib: recent update on activity as a single agent and in combination with interferon-alpha2 in patients with advanced-stage renal cell carcinoma. Clin Genitourin Cancer 4:246–248

    Article  PubMed  CAS  Google Scholar 

  16. Salot S, Laplace C, Saïagh S, Bercegeay S, Tenaud I, Cassidanius A, Romagne F, Dreno B, Tiollier J (2007) Large scale expansion of g9d2 T lymphocytes: Innacell gd™ cell therapy product. J Immunol Methods 326:63–75

    Article  PubMed  CAS  Google Scholar 

  17. Sicard H, Al Saati T, Delsol G, Fournie JJ (2001) Synthetic phosphoantigens enhance human Vγ9Vδ2 T lymphocytes killing of non-Hodgkin’s B lymphoma. Mol Med 7:711–22

    PubMed  CAS  Google Scholar 

  18. Sicard H, Ingoure S, Luciani B, Serraz C, Fournié JJ, Bonneville M, Tiollier J, Romagné F (2005) In vivo immunomanipulation of Vγ9Vδ2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 175:5471–80

    PubMed  CAS  Google Scholar 

  19. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  20. Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S, Caignard A (2005) Phosphostim-activated γδ T cells kill autologous metastatic renal cell carcinoma. J Immunol 174:1338–1347

    PubMed  CAS  Google Scholar 

  21. Viey E, Laplace C., Escudier B (2005) Peripheral γδ T lymphocytes as an innovative tool in immunotherapy for metastatic renal cell carcinoma. Expert Rev Anticancer Ther 5:973–86

    Article  PubMed  CAS  Google Scholar 

  22. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomised trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cell cancer. N Engl J Med 349:427-434

    Article  PubMed  CAS  Google Scholar 

  23. Yee C, Thompson JA, Roche P, Byrd D, Lee P, Piepkorn M, Kenyon K, Davis M, Riddell S, Greenberg P (2000) Melanocyte destruction after antigen-specific immunotherapy of Melanoma: direct evidence of T cell-mediated vitiligo. J Exp Med 192:1637–1643

    Article  PubMed  CAS  Google Scholar 

  24. Zheng BJ, Ng SP, Chua DT, Sham JS, Kwong DL, Lam CK, Ng MH (2002) Peripheral gamma delta T-cell deficit in nasopharyngeal carcinoma. Int J Cancer 99:213–217

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grand support: Innate Pharma SAS, Marseille, France.

Conflict of interest

Consultancy Agreement: Jaafar Bennounax. Clinical Investigator: Emmanuelle Bompas, Eve Marie Neidhardt, Frédéric Rolland, Irène Philip, Sylvie Négrier. Innate Pharma personnel: Céline Galéa, Samuel Salot, Sylvie Lafaye-de Micheaux, Jérôme Tiollier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaafar Bennouna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennouna, J., Bompas, E., Neidhardt, E.M. et al. Phase-I study of Innacell γδ™, an autologous cell-therapy product highly enriched in γ9δ2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57, 1599–1609 (2008). https://doi.org/10.1007/s00262-008-0491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0491-8

Keywords

Navigation