Skip to main content

Advertisement

Log in

Incubation of antigen-sensitized T lymphocytes activated with bryostatin 1 + ionomycin in IL-7 + IL-15 increases yield of cells capable of inducing regression of melanoma metastases compared to culture in IL-2

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Regression of established tumors can be induced by adoptive immunotherapy (AIT) with tumor draining lymph node (DLN) lymphocytes activated with bryostatin and ionomycin (B/I). We hypothesized that B/I-activated T cells cultured in IL-7 + IL-15 might proliferate and survive in culture better than cells cultured in IL-2, and that these cells would have equal or greater anti-tumor activity in vivo. Tumor antigen-sensitized DLN lymphocytes from either wild-type or T cell receptor transgenic mice were harvested, activated with B/I, and expanded in culture with either IL-2, IL-7 + IL-15 or a regimen of alternating cytokines. Cell yields, proliferation, apoptosis, phenotypes, and in vitro responses to tumor antigen were compared for cells grown in different cytokines. These T cells were also tested for anti-tumor activity against melanoma lung metastases established by prior i.v. injection of B16 melanoma cells. IL-7 + IL-15 or alternating cytokines resulted in much faster and prolonged proliferation and much less apopotosis of B/I-activated T cells than culturing the same cells in IL-2. This resulted in approximately tenfold greater yields of viable cells. Culture in IL-7 + IL-15 yielded higher proportions of CD8+ T cells and a higher proportion of cells with a central memory phenotype. Despite this, T cells grown in IL-7 + IL-15 had higher IFN-γ release responses to tumor antigen than cells grown in IL-2. Adoptive transfer of B/I-activated T cells grown in IL-7 + IL-15 or the alternating regimen had equal or greater efficacy on a “per-cell” basis against melanoma metastases. Activation of tumor antigen-sensitized T cells with B/I and culture in IL-7 + IL-15 is a promising modification of standard regimens for production of T cells for use in adoptive immunotherapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alexander JP, Kudoh S, Melsop KA, Hamilton TA, Edinger MG, Tubbs RR, Sica D, Tuason L, Klein E, Bukowski RM, Finke JH (1993) T-cells infiltrating renal cell carcinoma display a poor proliferative response even though they can produce interleukin 2 and express interleukin 2 receptors. Cancer Res 53:1380–1387

    PubMed  CAS  Google Scholar 

  2. Bathe OF, yot-Herman N, Malek TR (2001) IL-2 during in vitro priming promotes subsequent engraftment and successful adoptive tumor immunotherapy by persistent memory phenotypic CD8(+) T cells. J Immunol 167:4511–4517

    PubMed  CAS  Google Scholar 

  3. Boyman O, Purton JF, Surh CD, Sprent J (2007) Cytokines and T-cell homeostasis. Curr Opin Immunol 19:320–326

    Article  PubMed  CAS  Google Scholar 

  4. Cantrell D (1996) T cell antigen receptor signal transduction pathways. Annu Rev Immunol 14:259–274

    Article  PubMed  CAS  Google Scholar 

  5. Carrio R, Bathe OF, Malek TR (2004) Initial antigen encounter programs CD8+ T cells competent to develop into memory cells that are activated in an antigen-free, IL-7- and IL-15-rich environment. J Immunol 172:7315–7323

    PubMed  CAS  Google Scholar 

  6. Chang AE, Li Q, Jiang G, Sayre DM, Braun TM, Redman BG (2003) Phase II trial of autologous tumor vaccination, anti-CD3-activated vaccine-primed lymphocytes, and interleukin-2 in stage IV renal cell cancer. J Clin Oncol 21:884–890

    Article  PubMed  CAS  Google Scholar 

  7. Chatila T, Silverman L, Miller R, Geha R (1989) Mechanisms of T cell activation by the calcium ionophore ionomycin. J Immunol 143:1283–1289

    PubMed  CAS  Google Scholar 

  8. Chin CS, Miller CH, Graham L, Parviz M, Zacur S, Patel B, Duong A, Bear HD (2004) Bryostatin 1/ionomycin (B/I) ex vivo stimulation preferentially activates L-selectinlow tumor-sensitized lymphocytes. Int Immunol 16:1283–1294

    Article  PubMed  CAS  Google Scholar 

  9. Cohen PA, Peng LM, Kjaergaard J, Plautz GE, Finke JH, Koski GK, Czerniecki BJ, Shu SY (2001) T-cell adoptive therapy of tumors: mechanisms of improved therapeutic performance. Crit Rev Immunol 21:215–248

    PubMed  CAS  Google Scholar 

  10. Crossland KD, Lee VK, Chen W, Riddell SR, Greenberg PD, Cheever MA (1991) T cells from tumor-immune mice nonspecifically expanded in vitro with anti-CD3 plus IL-2 retain specific function in vitro and can eradicate disseminated leukemia in vivo. J Immunol 146:4414–4420

    PubMed  CAS  Google Scholar 

  11. Dudley ME, Rosenberg SA (2003) Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 3:666–675

    Article  PubMed  CAS  Google Scholar 

  12. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Sci 298:850–854

    Article  CAS  Google Scholar 

  13. Fong TA, Mosman TR (1989) The role of IFN-gamma in delayed-type hypersensitivity mediated by Th1 clones. J Immunol 143:2887–2893

    PubMed  CAS  Google Scholar 

  14. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151

    Article  PubMed  CAS  Google Scholar 

  15. Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6:331–337

    Article  PubMed  CAS  Google Scholar 

  16. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8(+) T cells. J Clin Invest 115:1616–1626

    Article  PubMed  CAS  Google Scholar 

  17. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393

    Article  PubMed  CAS  Google Scholar 

  18. Gett AV, Sallusto F, Lanzavecchia A, Geginat J (2003) T cell fitness determined by signal strength. Nat Immunol 4:355–360

    Article  PubMed  CAS  Google Scholar 

  19. Halaas O, Vik R, Espevik T (1998) Induction of Fas ligand in murine bone marrow NK cells by bacterial polysaccharides. J Immunol 160:4330–4336

    PubMed  CAS  Google Scholar 

  20. Harada M, Okamoto T, Omoto K, Tamada K, Takenoyama M, Hirashima C, Ito O, Kimura G, Nomoto K (1996) Specific immunotherapy with tumour-draining lymph node cells cultured with both anti-CD3 and anti-CD28 monoclonal antibodies. Immunol 87:447–453

    Article  CAS  Google Scholar 

  21. Haux J, Johnsen AC, Steinkjer B, Egeberg K, Sundan A, Espevik T (1999) The role of interleukin-2 in regulating the sensitivity of natural killer cells for Fas-mediated apoptosis. Cancer Immunol Immunother 48:139–146

    Article  PubMed  CAS  Google Scholar 

  22. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358:2698–2703

    Article  PubMed  CAS  Google Scholar 

  23. Joshi NS, Kaech SM (2008) Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J Immunol 180:1309–1315

    PubMed  CAS  Google Scholar 

  24. Kazanietz MG, Lewin NE, Gao F, Pettit GR, Blumberg PM (1994) Binding of [26-3H] bryostatin 1 and analogs to calcium-dependent and calcium-independent protein kinase C isozymes. Mol Pharmacol 46:374–379

    PubMed  CAS  Google Scholar 

  25. Keller AM, Borst J (2006) Control of peripheral T cell survival: a delicate division of labor between cytokines and costimulatory molecules. Hum Immunol 67:469–477

    Article  PubMed  CAS  Google Scholar 

  26. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, Grewal N, Spiess PJ, Antony PA, Palmer DC, Tagaya Y, Rosenberg SA, Waldmann TA, Restifo NP (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci U S A 101:1969–1974

    Article  PubMed  CAS  Google Scholar 

  27. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, Waldmann TA, Restifo NP (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102:9571–9576

    Article  PubMed  CAS  Google Scholar 

  28. Lanzavecchia A, Sallusto F (2005) Understanding the generation and function of memory T cell subsets. Curr Opin Immunol 17:326–332

    Article  PubMed  CAS  Google Scholar 

  29. Lian RH, Maeda M, Lohwasser S, Delcommenne M, Nakano T, Vance RE, Raulet DH, Takei F (2002) Orderly and nonstochastic acquisition of CD94/NKG2 receptors by developing NK cells derived from embryonic stem cells in vitro. J Immunol 168:4980–4987

    PubMed  CAS  Google Scholar 

  30. Lipshy KA, Kostuchenko PJ, Hamad GG, Bland CE, Barrett SK, Bear HD (1997) Sensitizing T-lymphocytes for adoptive immunotherapy by vaccination with wild-type or cytokine gene-transduced melanoma. Ann Surg Oncol 4:334–341

    Article  PubMed  CAS  Google Scholar 

  31. Liu S, Riley J, Rosenberg S, Parkhurst M (2006) Comparison of common gamma-chain cytokines, interleukin-2, interleukin-7, and interleukin-15 for the in vitro generation of human tumor-reactive T lymphocytes for adoptive cell transfer therapy. J Immunother 29:284–293

    Article  PubMed  CAS  Google Scholar 

  32. Mackensen A, Meidenbauer N, Vogl S, Laumer M, Berger J, Andreesen R (2006) Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J Clin Oncol 24:5060–5069

    Article  PubMed  CAS  Google Scholar 

  33. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL (2005) Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 115:1177–1187

    PubMed  CAS  Google Scholar 

  34. Mitchell MS, Darrah D, Yeung D, Halpern S, Wallace A, Voland J, Jones V, Kan-Mitchell J (2002) Phase I trial of adoptive immunotherapy with cytolytic T lymphocytes immunized against a tyrosinase epitope. J Clin Oncol 20:1075–1086

    Article  PubMed  CAS  Google Scholar 

  35. Morse MA, Clay TM, Lyerly HK (2002) Current status of adoptive immunotherapy of malignancies. Expert Opin Biol Ther 2:237–247

    Article  PubMed  CAS  Google Scholar 

  36. Nijhuis EWP, Wiel-van Kemenade EVD, Figdor CG, Van Lier RAW (1990) Activation and expansion of tumour-infiltrating lymphocytes by anti-CD3 and anti-CD28 monoclonal antibodies. Cancer Immunol Immunother 32:245–250

    Article  PubMed  CAS  Google Scholar 

  37. Oh S, Berzofsky JA, Burke DS, Waldmann TA, Perera LP (2003) Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. Proc Natl Acad Sci USA 100:3392–3397

    Article  PubMed  CAS  Google Scholar 

  38. Pettit GR, Herald SL, Doubek DL, Arnold E, Clardy J (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104:6846–6848

    Article  CAS  Google Scholar 

  39. Plautz GE, Cohen PA, Shu S (2003) Considerations on clinical use of T cell immunotherapy for cancer. Arch Immunol Ther Exp (Warsz) 51:245–257

    CAS  Google Scholar 

  40. Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK (1998) Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8:615–623

    Article  PubMed  CAS  Google Scholar 

  41. Rolle CE, Carrio R, Malek TR (2008) Modeling the CD8+ T effector to memory transition in adoptive T-cell antitumor immunotherapy. Cancer Res 68:2984–2992

    Article  PubMed  CAS  Google Scholar 

  42. Roychowdhury S, May KF Jr, Tzou KS, Lin T, Bhatt D, Freud AG, Guimond M, Ferketich AK, Liu Y, Caligiuri MA (2004) Failed adoptive immunotherapy with tumor-specific T cells: reversal with low-dose interleukin 15 but not low-dose interleukin 2. Cancer Res 64:8062–8067

    Article  PubMed  CAS  Google Scholar 

  43. Sprent J, Cho JH, Boyman O, Surh CD (2008) T cell homeostasis. Immunol Cell Biol 86:312–319

    Article  PubMed  CAS  Google Scholar 

  44. Tuttle TM, Bethke KP, Inge TH, McCrady CW, Pettit GR, Bear HD (1992) Bryostatin 1-activated T cells can traffic and mediate tumor regression. J Surg Res 52:543–548

    Article  PubMed  CAS  Google Scholar 

  45. Tuttle TM, Fleming MF, Hogg PS, Inge TH, Bear HD (1994) Low-dose cyclophosphamide overcomes metastasis-induced immunosuppression. Ann Surg Oncol 1:53–58

    Article  PubMed  CAS  Google Scholar 

  46. Tuttle TM, McCrady CW, Inge TH, Salour M, Bear HD (1993) γ-Interferon plays a key role in T-cell-induced tumor regression. Cancer Res 53:833–839

    PubMed  CAS  Google Scholar 

  47. Van PL, Refaeli Y, Lord JD, Nelson BH, Abbas AK, Baltimore D (1999) Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11:281–288

    Article  Google Scholar 

  48. Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6:595–601

    Article  PubMed  CAS  Google Scholar 

  49. Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105–110

    PubMed  CAS  Google Scholar 

  50. Yee C (2003) Adoptive T cell therapy—immune monitoring and MHC multimers. Clin Immunol 106:5–9

    Article  PubMed  CAS  Google Scholar 

  51. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173

    Article  PubMed  CAS  Google Scholar 

  52. Yoshizawa H, Chang AE, Shu S (1991) Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2. J Immunol 147:729–737

    PubMed  CAS  Google Scholar 

  53. Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA (2007) IL-2 is essential for TGF-beta to convert naive CD4+CD25− cells to CD25 + Foxp3 + regulatory T cells and for expansion of these cells. J Immunol 178:2018–2027

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Douglas Bear.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, H.K., Graham, L., Miller, C.H.T. et al. Incubation of antigen-sensitized T lymphocytes activated with bryostatin 1 + ionomycin in IL-7 + IL-15 increases yield of cells capable of inducing regression of melanoma metastases compared to culture in IL-2. Cancer Immunol Immunother 58, 1565–1576 (2009). https://doi.org/10.1007/s00262-009-0666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0666-y

Keywords

Navigation