Skip to main content
Log in

Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In vitro, engagement of GITR on Treg cells by the agonistic anti-GITR mAb, DTA-1, appears to abrogate their suppressive function. The consequence of in vivo engagement of GITR by DTA-1 is, however, less clear. In this study, we show that Treg cells isolated from DTA-1-treated mice were as potent as those from untreated mice in suppressing conventional CD4 T cells in vitro, indicating that in vivo GITR ligation does not disable Treg cells. Treatment of Foxp3/GFP knock-in mice with DTA-1 led to a selective reduction of circulating Treg cells, suggesting that DTA-1 is a depleting mAb which preferentially targets Treg cells. In tumour-bearing mice, DTA-1-mediated depletion of Treg cells was most marked in tumours but not in tumour-draining lymph node. These features were confirmed in an adoptive transfer model using tumour antigen-specific Treg cells. Interestingly, Treg cells detected in tumour tissues expressed much higher levels of GITR than those in tumour-draining lymph nodes, indicating that the efficiency of depletion might be correlated with the level of GITR expression. Finally, in vivo labelling of GITR in naive or tumour-bearing mice demonstrated that Treg cells constitutively expressed higher levels of GITR than conventional T cells, independent of location and activation state, consistent with the preferential in vivo depletion of Tregs by DTA-1. Thus, depletion of Treg cells represents a previously unrecognised in vivo activity of DTA-1 which has important implications for the application of anti-GITR antibodies in cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

dLN:

Tumour-draining lymph node

pLN:

Peripheral LN

nTreg:

Natural CD4+CD25+Foxp3+ regulatory T cells

Mar:

Marilyn mice

PBL:

Peripheral blood lymphocytes

MFI:

Mean florescence intensity

Foxp3/GFP:

Foxp3/GFP knock-in mice

References

  1. Nocentini G, Giunchi L, Ronchetti S et al (1997) A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA 94:6216–6221

    Article  PubMed  CAS  Google Scholar 

  2. Gurney AL, Marsters SA, Huang RM et al (1999) Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr Biol 9:215–218

    Article  PubMed  CAS  Google Scholar 

  3. Kwon B, Yu KY, Ni J et al (1999) Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand. J Biol Chem 274:6056–6061

    Article  PubMed  CAS  Google Scholar 

  4. Shimizu J, Yamazaki S, Takahashi T et al (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142

    Article  PubMed  CAS  Google Scholar 

  5. McHugh RS, Whitters MJ, Piccirillo CA et al (2002) CD4+ CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16:311–323

    Article  PubMed  CAS  Google Scholar 

  6. Ji HB, Liao G, Faubion WA et al (2004) Cutting edge: the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J Immunol 172:5823–5827

    PubMed  CAS  Google Scholar 

  7. Tone M, Tone Y, Adams E et al (2003) Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA 100:15059–15064

    Article  PubMed  CAS  Google Scholar 

  8. Ronchetti S, Zollo O, Bruscoli S et al (2004) GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 34:613–622

    Article  PubMed  CAS  Google Scholar 

  9. Kohm AP, Williams JS, Miller SD (2004) Cutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis. J Immunol 172:4686–4690

    PubMed  CAS  Google Scholar 

  10. Kanamaru F, Youngnak P, Hashiguchi M et al (2004) Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol 172:7306–7314

    PubMed  CAS  Google Scholar 

  11. Stephens GL, McHugh RS, Whitters MJ et al (2004) Engagement of glucocorticoid-induced TNFR family-related receptor on effector T Cells by its ligand mediates resistance to suppression by CD4+ CD25+ T cells. J Immunol 173:5008–5020

    PubMed  CAS  Google Scholar 

  12. Shevach EM, Stephens GL (2006) The GITR-GITRL interaction: co-stimulation or contrasuppression of regulatory activity? Nat Rev Immunol 6:613–618

    Article  PubMed  CAS  Google Scholar 

  13. Nocentini G, Riccardi C (2005) GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 35:1016–1022

    Article  PubMed  CAS  Google Scholar 

  14. Turk MJ, Guevara-Patiño JA, Rizzuto GA et al (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782

    Article  PubMed  CAS  Google Scholar 

  15. Ko K, Yamazaki S, Nakamura K et al (2005) Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3 + CD25+ CD4+ regulatory T cells. J Exp Med 202:885–891

    Article  PubMed  CAS  Google Scholar 

  16. Ramirez-Montagut T, Chow A, Hirschhorn-Cymerman D et al (2006) Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. J Immunol 176:6434–6442

    PubMed  CAS  Google Scholar 

  17. Cohen AD, Diab A, Perales MA et al (2006) Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer Res 66:4904–4912

    Article  PubMed  CAS  Google Scholar 

  18. Zhou P, L’italien L, Hodges D et al (2007) Pivotal roles of CD4+ effector T cells in mediating agonistic anti-GITR mAb-induced-immune activation and tumor immunity in CT26 tumors. J Immunol 179:7365–7375

    PubMed  CAS  Google Scholar 

  19. Valzasina B, Guiducci C, Dislich H et al (2005) Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105:2845–2851

    Article  PubMed  CAS  Google Scholar 

  20. Sharma S, Dominguez AL, Manrique SZ et al (2008) Systemic targeting of CpG-ODN to the tumor microenvironment with anti-neu-CpG hybrid molecule and T regulatory cell depletion induces memory responses in BALB-neuT tolerant mice. Cancer Res 68:7530–7540

    Article  PubMed  CAS  Google Scholar 

  21. Suvas S, Kim B, Sarangi PP et al (2005) In vivo kinetics of GITR and GITR ligand expression and their functional significance in regulating viral immunopathology. J Virol 79:11935–11942

    Article  PubMed  CAS  Google Scholar 

  22. Wang Y, Kissenpfennig A, Mingueneau M et al (2008) Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3 + regulatory T cells. J Immunol 180:1565–1575

    PubMed  CAS  Google Scholar 

  23. Grandjean I, Duban L, Bonney EA et al (2003) Are major histocompatibility complex molecules involved in the survival of naive CD4+ T Cells? J Exp Med 198:1089–1102

    Article  PubMed  CAS  Google Scholar 

  24. Summerhayes IC, Franks LM (1979) Effects of donor age on neoplastic transformation of adult mouse bladder epithelium in vitro. J Natl Cancer Inst 62:1017–1023

    PubMed  CAS  Google Scholar 

  25. Gulbenkian AR, Egan RW, Fernandez X et al (1992) Interleukin-5 modulates eosinophil accumulation in allergic guinea pig lung. Am Rev Respir Dis 146:263–266

    PubMed  CAS  Google Scholar 

  26. Lowenthal JW, Corthesy P, Tougne C et al (1985) High and low affinity IL 2 receptors: analysis by IL 2 dissociation rate and reactivity with monoclonal anti-receptor antibody PC61. J Immunol 135:3988–3994

    PubMed  CAS  Google Scholar 

  27. Chai JG, Tsang JY, Lechler R et al (2002) CD4+ CD25+ T cells as immunoregulatory T cells in vitro. Eur J Immunol 32:2365–2375

    Article  PubMed  CAS  Google Scholar 

  28. Yang AS, Monken CE, Lattime EC (2003) Intratumoral vaccination with vaccinia-expressed tumor antigen and granulocyte macrophage colony-stimulating factor overcomes immunological ignorance to tumor antigen. Cancer Res 63:6956–6961

    PubMed  CAS  Google Scholar 

  29. Fontenot JD, Rasmussen JP, Williams LM et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22:329–341

    Article  PubMed  CAS  Google Scholar 

  30. Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205:825–839

    Article  PubMed  CAS  Google Scholar 

  31. Lutsiak ME, Tagaya Y, Adams AJ et al (2008) Tumor-induced impairment of TCR signaling results in compromised functionality of tumor-infiltrating regulatory T cells. J Immunol 180:5871–5881

    PubMed  CAS  Google Scholar 

  32. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  33. Qin FX (2009) Dynamic behavior and function of Foxp3 + regulatory T cells in tumor bearing host. Cell Mol Immunol 6:3–13

    Article  PubMed  CAS  Google Scholar 

  34. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunological self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  35. Ghiringhelli F, Puig PE, Roux S et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+ CD25+ regulatory T cell proliferation. J Exp Med 202:919–929

    Article  PubMed  CAS  Google Scholar 

  36. Sharma MD, Baban B, Chandler P et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2, 3-dioxygenase. J Clin Invest 117:2570–2582

    Article  PubMed  CAS  Google Scholar 

  37. Tang Q, Bluestone J (2008) The Foxp3 + regulatory T cell: a jack of all trades, master of regulation. Nat Rev Immunol 9:239–244

    Article  CAS  Google Scholar 

  38. Mempel TR, Pittet MJ, Khazaie K et al (2006) Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25:129–141

    Article  PubMed  CAS  Google Scholar 

  39. Khazaie K, von Boehmer H (2006) The impact of CD4+ CD25+ Treg on tumor specific CD8+ T cell cytotoxicity and cancer. Semin Cancer Biol 16:124–136

    Article  PubMed  CAS  Google Scholar 

  40. Cao X, Cai SF, Fehniger TA et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumour clearance. Immunity 27:635–646

    Article  PubMed  CAS  Google Scholar 

  41. You S, Poulton L, Cobbold S et al (2009) Key role of the GITR/GITRLigand pathway in the development of murine autoimmune diabetes: a potential therapeutic target. PLoS One 4:7848

    Article  CAS  Google Scholar 

  42. Yu P, Lee Y, Liu W et al (2005) Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201:779–791

    Article  PubMed  CAS  Google Scholar 

  43. Larsen CP, Elwood ET, Alexander DZ et al (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381:434–438

    Article  PubMed  CAS  Google Scholar 

  44. Monk NJ, Hargreaves RE, Marsh JE et al (2003) Fc-dependent depletion of activated T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nat Med 10:1275–1280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shimon Sakaguchi and Dr. Bernard Massile for providing DTA-1 hybridoma cells and Foxp3/GFP knockin mice, respectively. We also thank Dr. Elizabeth Simpson for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Chai.

Additional information

This work was supported by a Senior Cancer Research Fellowship to JGC from Cancer Research, UK.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 696 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coe, D., Begom, S., Addey, C. et al. Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunol Immunother 59, 1367–1377 (2010). https://doi.org/10.1007/s00262-010-0866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0866-5

Keywords

Navigation