Skip to main content

Advertisement

Log in

Receptor desensitization and blockade of the suppressive effects of prostaglandin E2 and adenosine on the cytotoxic activity of human melanoma-infiltrating T lymphocytes

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Previous studies document that PGE2 and adenosine suppress production of inflammatory cytokines. The present study demonstrates for the first time that (1) PGE2 and 2-chloroadenosine (CADO; a stable analog of adenosine) directly inhibit the cytolytic function of human tumor-infiltrating lymphocytes (TILs); (2) the combination PGE2 and CADO have additive suppressive effects; and (3) the cooperative immunosuppressive actions of PGE2 and CADO are mediated via EP2 receptors (EP2Rs) and A2A receptors (A2ARs) and are due to amplification of cAMP production, activation of protein kinase A (PKA) and T cell receptor (TCR) inhibitor Csk leading to inhibition of Lck, ZAP-70 and Akt phosphorylation. (4) During ex vivo expansion, TILs undergo three stages of differentiation converting from TILs with high cytotoxic activity and relative resistance to combined EP2R/A2AR suppression (stage I) to TILs retaining high cytotoxicity and gaining sensitivity to combined suppression (stage II) and then to TILS that are less cytotoxic and very sensitive to combined suppression (stage III). (5) Finally, we find that pretreatment of TILs with non-inhibitory concentrations of EP2R agonists (such as PGE2 or butaprost) or A2AR agonists (such as CADO or CGS21680) increases their cytotoxic activity and induces resistance to EP2R and A2AR inhibitory signaling (cross-resistance) due to homologous and heterologous desensitization and internalization of EP2Rs and A2ARs, thus preventing their inhibitory signaling. We conclude that inducing resistance of TILs to the suppressive effects of PGE2 and adenosine in the tumor microenvironment could represent a novel strategy for improving the efficacy of adoptive immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21:233–240

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  CAS  PubMed  Google Scholar 

  3. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544

    Article  CAS  PubMed  Google Scholar 

  4. Gabrilovich DI (2007) Molecular mechanisms and therapeutic reversal of immune suppression in cancer. Curr Cancer Drug Targets 7:1

    Article  CAS  PubMed  Google Scholar 

  5. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, Harlin H (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131–145

    Article  CAS  PubMed  Google Scholar 

  6. Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122

    Article  CAS  PubMed  Google Scholar 

  7. Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, Royal RE, Kammula U, Restifo NP, Hughes MS, Schwartzentruber D, Berman DM, Schwarz SL, Ngo LT, Mavroukakis SA, White DE, Steinberg SM (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8 + T cells in patients with melanoma. J Immunol 175:6169–6176

    CAS  PubMed  Google Scholar 

  8. Cronstein BN (1994) Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 76:5–13

    CAS  PubMed  Google Scholar 

  9. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP (2002) Prostaglandins as modulators of immunity. Trends Immunol 23:144–150

    Article  CAS  PubMed  Google Scholar 

  10. Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39

    Article  CAS  PubMed  Google Scholar 

  11. Hata AN, Breyer RM (2004) Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther 103:147–166

    Article  CAS  PubMed  Google Scholar 

  12. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682

    Article  CAS  PubMed  Google Scholar 

  13. Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26:299–304

    Article  CAS  PubMed  Google Scholar 

  14. Fredholm BB, Chern Y, Franco R, Sitkovsky M (2007) Aspects of the general biology of adenosine A2A signaling. Prog Neurobiol 83:263–276

    Article  CAS  PubMed  Google Scholar 

  15. Kundu N, Walser TC, Ma X, Fulton AM (2005) Cyclooxygenase inhibitors modulate NK activities that control metastatic disease. Cancer Immunol Immunother 54:981–987

    Article  CAS  PubMed  Google Scholar 

  16. Raskovalova T, Huang X, Sitkovsky M, Zacharia LC, Jackson EK, Gorelik E (2005) Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J Immunol 175:4383–4391

    CAS  PubMed  Google Scholar 

  17. Su Y, Huang X, Raskovalova T, Zacharia L, Lokshin A, Jackson E, Gorelik E (2008) Cooperation of adenosine and prostaglandin E(2) (PGE (2)) in amplification of cAMP-PKA signaling and immunosuppression. Cancer Immunol Immunother 57:1611–1623

    Article  CAS  PubMed  Google Scholar 

  18. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605

    CAS  PubMed  Google Scholar 

  19. Dannenberg AJ, Subbaramaiah K (2003) Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 4:431–436

    Article  CAS  PubMed  Google Scholar 

  20. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA 103:13132–13137

    Article  CAS  PubMed  Google Scholar 

  21. Koshiba M, Kojima H, Huang S, Apasov S, Sitkovsky MV (1997) Memory of extracellular adenosine A2A purinergic receptor-mediated signaling in murine T cells. J Biol Chem 272:25881–25889

    Article  CAS  PubMed  Google Scholar 

  22. Raskovalova T, Lokshin A, Huang X, Su Y, Mandic M, Zarour HM, Jackson EK, Gorelik E (2007) Inhibition of cytokine production and cytotoxic activity of human antimelanoma specific CD8 + and CD4 + T lymphocytes by adenosine-protein kinase A type I signaling. Cancer Res 67:5949–5956

    Article  CAS  PubMed  Google Scholar 

  23. Armstrong JM, Chen JF, Schwarzschild MA, Apasov S, Smith PT, Caldwell C, Chen P, Figler H, Sullivan G, Fink S, Linden J, Sitkovsky M (2001) Gene dose effect reveals no Gs-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-gene-deficient mice. Biochem J 354:123–130

    Article  CAS  PubMed  Google Scholar 

  24. Desai S, April H, Nwaneshiudu C, Ashby B (2000) Comparison of agonist-induced internalization of the human EP2 and EP4 prostaglandin receptors: role of the carboxyl terminus in EP4 receptor sequestration. Mol Pharmacol 58:1279–1286

    CAS  PubMed  Google Scholar 

  25. Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    CAS  PubMed  Google Scholar 

  26. Klaasse EC, Ijzerman AP, de Grip WJ, Beukers MW (2008) Internalization and desensitization of adenosine receptors. Purinergic Signal 4:21–37

    Article  CAS  PubMed  Google Scholar 

  27. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  CAS  PubMed  Google Scholar 

  28. Schmedt C, Saijo K, Niidome T, Kuhn R, Aizawa S, Tarakhovsky A (1998) Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature 394:901–904

    Article  CAS  PubMed  Google Scholar 

  29. Tasken K, Ruppelt A (2006) Negative regulation of T-cell receptor activation by the cAMP-PKA-Csk signalling pathway in T-cell lipid rafts. Front Biosci 11:2929–2939

    Article  CAS  PubMed  Google Scholar 

  30. Torgersen KM, Vang T, Abrahamsen H, Yaqub S, Horejsi V, Schraven B, Rolstad B, Mustelin T, Tasken K (2001) Release from tonic inhibition of T cell activation through transient displacement of C-terminal Src kinase (Csk) from lipid rafts. J Biol Chem 276:29313–29318

    Article  CAS  PubMed  Google Scholar 

  31. Vang T, Abrahamsen H, Myklebust S, Enserink J, Prydz H, Mustelin T, Amarzguioui M, Tasken K (2004) Knockdown of C-terminal Src kinase by siRNA-mediated RNA interference augments T cell receptor signaling in mature T cells. Eur J Immunol 34:2191–2199

    Article  CAS  PubMed  Google Scholar 

  32. Vang T, Abrahamsen H, Myklebust S, Horejsi V, Tasken K (2003) Combined spatial and enzymatic regulation of Csk by cAMP and protein kinase A inhibits T cell receptor signaling. J Biol Chem 278:17597–17600

    Article  CAS  PubMed  Google Scholar 

  33. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619

    Article  CAS  PubMed  Google Scholar 

  34. Fuller CL, Ravichandran KS, Braciale VL (1999) Phosphatidylinositol 3-kinase-dependent and -independent cytolytic effector functions. J Immunol 162:6337–6340

    CAS  PubMed  Google Scholar 

  35. Okkenhaug K, Vanhaesebroeck B (2003) PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol 3:317–330

    Article  CAS  PubMed  Google Scholar 

  36. Sugiyama H, Chen P, Hunter M, Taffs R, Sitkovsky M (1992) The dual role of the cAMP-dependent protein kinase C alpha subunit in T-cell receptor-triggered T-lymphocytes effector functions. J Biol Chem 267:25256–25263

    CAS  PubMed  Google Scholar 

  37. Takayama H, Trenn G, Sitkovsky MV (1988) Locus of inhibitory action of cAMP-dependent protein kinase in the antigen receptor-triggered cytotoxic T lymphocyte activation pathway. J Biol Chem 263:2330–2336

    CAS  PubMed  Google Scholar 

  38. Torgersen KM, Vaage JT, Levy FO, Hansson V, Rolstad B, Tasken K (1997) Selective activation of cAMP-dependent protein kinase type I inhibits rat natural killer cell cytotoxicity. J Biol Chem 272:5495–5500

    Article  CAS  PubMed  Google Scholar 

  39. Vang T, Torgersen KM, Sundvold V, Saxena M, Levy FO, Skalhegg BS, Hansson V, Mustelin T, Tasken K (2001) Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med 193:497–507

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Kerstann KW, Ahmadzadeh M, Li YF, El-Gamil M, Rosenberg SA, Robbins PF (2006) Modulation by IL-2 of CD70 and CD27 expression on CD8 + T cells: importance for the therapeutic effectiveness of cell transfer immunotherapy. J Immunol 176:7726–7735

    CAS  PubMed  Google Scholar 

  41. Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27 + CD28 + tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–250

    Article  CAS  PubMed  Google Scholar 

  42. Sitkovsky M, Lukashev D, Deaglio S, Dwyer K, Robson SC, Ohta A (2008) Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 153(Suppl 1):457–464

    Google Scholar 

  43. Ohta A, Kjaergaard J, Sharma S, Mohsin M, Goel N, Madasu M, Fradkov E, Sitkovsky M (2009) In vitro induction of T cells that are resistant to A2 adenosine receptor-mediated immunosuppression. Br J Pharmacol 156:297–306

    Article  CAS  PubMed  Google Scholar 

  44. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Steven Rosenberg and Dr. John Wonderlich for generously providing samples of TILs for these studies. This work was supported by the DOD, Award BC051720, and Hillman Foundation (E.G.), NIH grants DK68575 and DK79307 (EKJ).

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elieser Gorelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Jackson, E.K. & Gorelik, E. Receptor desensitization and blockade of the suppressive effects of prostaglandin E2 and adenosine on the cytotoxic activity of human melanoma-infiltrating T lymphocytes. Cancer Immunol Immunother 60, 111–122 (2011). https://doi.org/10.1007/s00262-010-0924-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0924-z

Keywords

Navigation