Skip to main content

Advertisement

Log in

Rapamycin increases the yield and effector function of human γδ T cells stimulated in vitro

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Clinical strategies to exploit Vγ2Vδ2 T cell responses for immunotherapy are confronted with short-term increases in cell levels or activity and the development of anergy that reduces the response to therapy with succeeding treatments. We are exploring strategies to increase the yield and durability of elicited Vγ2Vδ2 T cell responses. One approach focuses on the mammalian target of rapamycin (mTOR), which is important for regulating T cell metabolism and function. In Vγ2Vδ2 T cells, mTOR phosphorylates the S6K1 and eIF4EBP1 signaling intermediates after antigen stimulation. Rapamycin inhibited these phosphorylation events without impacting Akt or Erk activation, even though specific inhibition of Akt or Erk in turn reduced the activation of mTOR. The effects of rapamycin on the T cell receptor signaling pathway lead to increased proliferation of treated and antigen-exposed Vγ2Vδ2 cells. Rapamycin altered the phenotype of antigen-specific Vγ2Vδ2 cells by inducing a population shift from CD62L + CD69− to CD62L-CD69+, higher expression of CD25 or Bcl-2, lower levels of CCR5 and increased resistance to Fas-mediated cellular apoptosis. These changes were consistent with rapamycin promoting cell activation while decreasing the susceptibility to cell death that might occur by CCR5 or Fas signaling. Rapamycin treatment during antigen-stimulation of Vγ2Vδ2 T cells may be a strategy for overcoming current obstacles in tumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2(5):336–345. doi:10.1038/nri797

    Article  CAS  PubMed  Google Scholar 

  2. Alexander AA, Maniar A, Cummings JS, Hebbeler AM, Schulze DH, Gastman BR, Pauza CD, Strome SE, Chapoval AI (2008) Isopentenyl pyrophosphate-activated cd56 + gamma}{delta T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin Cancer Res 14(13):4232–4240. doi:10.1158/1078-0432.CCR-07-4912

    Article  CAS  PubMed  Google Scholar 

  3. Qin G, Mao H, Zheng J, Sia SF, Liu Y, Chan PL, Lam KT, Peiris JS, Lau YL, Tu W (2009) Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J Infect Dis 200(6):858–865. doi:10.1086/605413

    Article  CAS  PubMed  Google Scholar 

  4. Bonneville M, Scotet E (2006) Human vgamma9vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 18(5):539–546. doi:10.1016/j.coi.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  5. Caccamo N, Meraviglia S, Scarpa F, La Mendola C, Santini D, Bonanno CT, Misiano G, Dieli F, Salerno A (2008) Aminobisphosphonate-activated gammadelta T cells in immunotherapy of cancer: doubts no more. Expert Opin Biol Ther 8(7):875–883. doi:10.1517/14712598.8.7.875

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Das H, Kamath A, Bukowski JF (2001) Human v gamma 2v delta 2 T cells produce IFN-gamma and TNF-alpha with an on/off/on cycling pattern in response to live bacterial products. J Immunol 167(11):6195–6201

    CAS  PubMed  Google Scholar 

  7. Li H, Luo K, Pauza CD (2008) TNF-alpha is a positive regulatory factor for human vgamma2 vdelta2 T cells. J Immunol 181(10):7131–7137

    CAS  PubMed  Google Scholar 

  8. Viey E, Fromont G, Escudier B, Morel Y, Da Rocha S, Chouaib S, Caignard A (2005) Phosphostim-activated gamma delta t cells kill autologous metastatic renal cell carcinoma. J Immunol 174(3):1338–1347

    CAS  PubMed  Google Scholar 

  9. Liu Z, Guo BL, Gehrs BC, Nan L, Lopez RD (2005) Ex vivo expanded human vgamma9vdelta2 + gammadelta-T cells mediate innate antitumor activity against human prostate cancer cells in vitro. J Urol 173(5):1552–1556

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka Y, Morita CT, Nieves E, Brenner MB, Bloom BR (1995) Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 375(6527):155–158. doi:10.1038/375155a0

    Article  CAS  PubMed  Google Scholar 

  11. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96(2):384–392

    CAS  PubMed  Google Scholar 

  12. Wilhelm M, Kunzmann V, Eckstein S, Reimer P, Weissinger F, Ruediger T, Tony HP (2003) Gammadelta T cells for immune therapy of patients with lymphoid malignancies. Blood 102(1):200–206. doi:10.1182/blood-2002-12-3665

    Article  CAS  PubMed  Google Scholar 

  13. Dieli F, Gebbia N, Poccia F, Caccamo N, Montesano C, Fulfaro F, Arcara C, Valerio MR, Meraviglia S, Di Sano C, Sireci G, Salerno A (2003) Induction of gammadelta T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo. Blood 102(6):2310–2311. doi:10.1182/blood-2003-05-1655

    Article  CAS  PubMed  Google Scholar 

  14. Dieli F, Vermijlen D, Fulfaro F, Caccamo N, Meraviglia S, Cicero G, Roberts A, Buccheri S, D’Asaro M, Gebbia N, Salerno A, Eberl M, Hayday AC (2007) Targeting human gamma}delta T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res 67(15):7450–7457. doi:10.1158/0008-5472.CAN-07-0199

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi H, Tanaka Y, Yagi J, Osaka Y, Nakazawa H, Uchiyama T, Minato N, Toma H (2007) Safety profile and anti-tumor effects of adoptive immunotherapy using gamma-delta T cells against advanced renal cell carcinoma: a pilot study. Cancer Immunol Immunother 56(4):469–476. doi:10.1007/s00262-006-0199-6

    Article  CAS  PubMed  Google Scholar 

  16. Bennouna J, Bompas E, Neidhardt EM, Rolland F, Philip I, Galea C, Salot S, Saiagh S, Audrain M, Rimbert M, Lafaye-de Micheaux S, Tiollier J, Negrier S (2008) Phase-i study of innacell gammadelta, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 57(11):1599–1609. doi:10.1007/s00262-008-0491-8

    Article  CAS  PubMed  Google Scholar 

  17. Sicard H, Ingoure S, Luciani B, Serraz C, Fournie JJ, Bonneville M, Tiollier J, Romagne F (2005) In vivo immunomanipulation of v gamma 9v delta 2 T cells with a synthetic phosphoantigen in a preclinical nonhuman primate model. J Immunol 175(8):5471–5480

    CAS  PubMed  Google Scholar 

  18. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (ay-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28(10):721–726

    CAS  Google Scholar 

  19. Saunders RN, Metcalfe MS, Nicholson ML (2001) Rapamycin in transplantation: a review of the evidence. Kidney Int 59(1):3–16. doi:10.1046/j.1523-1755.2001.00460.x

    Article  CAS  PubMed  Google Scholar 

  20. Dittrich E, Schmaldienst S, Soleiman A, Horl WH, Pohanka E (2004) Rapamycin-associated post-transplantation glomerulonephritis and its remission after reintroduction of calcineurin-inhibitor therapy. Transpl Int 17(4):215–220. doi:10.1007/s00147-004-0700-0

    Article  CAS  PubMed  Google Scholar 

  21. Izzedine H, Brocheriou I, Frances C (2005) Post-transplantation proteinuria and sirolimus. N Engl J Med 353(19):2088–2089. doi:10.1056/NEJM200511103531922

    Article  CAS  PubMed  Google Scholar 

  22. Singer SJ, Tiernan R, Sullivan EJ (2000) Interstitial pneumonitis associated with sirolimus therapy in renal-transplant recipients. N Engl J Med 343(24):1815–1816

    CAS  PubMed  Google Scholar 

  23. Thaunat O, Beaumont C, Chatenoud L, Lechaton S, Mamzer-Bruneel MF, Varet B, Kreis H, Morelon E (2005) Anemia after late introduction of sirolimus may correlate with biochemical evidence of a chronic inflammatory state. Transplantation 80(9):1212–1219

    Article  CAS  PubMed  Google Scholar 

  24. Thomson AW, Turnquist HR, Raimondi G (2009) Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 9(5):324–337. doi:10.1038/nri2546

    Article  CAS  PubMed  Google Scholar 

  25. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORc components raptor, rictor, or mlst8 reveals that mTORc2 is required for signaling to Akt-foxo and pkcalpha, but not s6k1. Dev Cell 11(6):859–871. doi:10.1016/j.devcel.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  26. Weichhart T, Saemann MD (2009) The multiple facets of mTOR in immunity. Trends Immunol 30(5):218–226. doi:10.1016/j.it.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  27. Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, Pulendran B (2008) Toll-like receptor-mediated induction of type i interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive pi(3)k-mTOR-p70s6k pathway. Nat Immunol 9(10):1157–1164. doi:10.1038/ni.1645

    Article  CAS  PubMed  Google Scholar 

  28. Turnquist HR, Cardinal J, Macedo C, Rosborough BR, Sumpter TL, Geller DA, Metes D, Thomson AW (2010) mTOR and GSK-3 shape the CD4+ T cell stimulatory and differentiation capacity of myeloid dc following exposure to LPS. Blood. doi:10.1182/blood-2009-10-251488

  29. Sinclair LV, Finlay D, Feijoo C, Cornish GH, Gray A, Ager A, Okkenhaug K, Hagenbeek TJ, Spits H, Cantrell DA (2008) Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol 9(5):513–521. doi:10.1038/ni.1603

    Article  CAS  PubMed  Google Scholar 

  30. Haxhinasto S, Mathis D, Benoist C (2008) The Akt-mTOR axis regulates de novo differentiation of CD4+ FOXp3+ cells. J Exp Med 205(3):565–574. doi:10.1084/jem.20071477

    Article  CAS  PubMed  Google Scholar 

  31. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) Mtor regulates memory CD8 T cell differentiation. Nature 460(7251):108–112. doi:10.1038/nature08155

    Article  CAS  PubMed  Google Scholar 

  32. Gilliam BL, Heredia A, Devico A, Le N, Bamba D, Bryant JL, Pauza CD, Redfield RR (2007) Rapamycin reduces ccr5 mRNA levels in macaques: potential applications in HIV-1 prevention and treatment. AIDS 21(15):2108–2110. doi:10.1097/QAD.0b013e3282f02a4f

    Article  CAS  PubMed  Google Scholar 

  33. Papadopoulos NG, Dedoussis GV, Spanakos G, Gritzapis AD, Baxevanis CN, Papamichail M (1994) An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. J Immunol Methods 177(1–2):101–111

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Pauza CD (2009) Effects of 15-deoxy-delta12, 14-prostaglandin j2 (15d-pgj2) and rosiglitazone on human gammadelta2 t cells. PLoS One 4(11):e7726. doi:10.1371/journal.pone.0007726

    Article  PubMed  Google Scholar 

  35. Murooka TT, Wong MM, Rahbar R, Majchrzak-Kita B, Proudfoot AE, Fish EN (2006) Ccl5-ccr5-mediated apoptosis in t cells: requirement for glycosaminoglycan binding and ccl5 aggregation. J Biol Chem 281(35):25184–25194. doi:10.1074/jbc.M603912200

    Article  CAS  PubMed  Google Scholar 

  36. Tikhonov I, Deetz CO, Paca R, Berg S, Lukyanenko V, Lim JK, Pauza CD (2006) Human vgamma2vdelta2 T cells contain cytoplasmic rantes. Int Immunol 18(8):1243–1251. doi:10.1093/intimm/dxl055

    Article  CAS  PubMed  Google Scholar 

  37. Cory S, Huang DC, Adams JM (2003) The bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22(53):8590–8607. doi:10.1038/sj.onc.1207102

    Article  CAS  PubMed  Google Scholar 

  38. Brandes M, Willimann K, Moser B (2005) Professional antigen-presentation function by human gammadelta T cells. Science 309(5732):264–268. doi:10.1126/science.1110267

    Article  CAS  PubMed  Google Scholar 

  39. Strauss L, Czystowska M, Szajnik M, Mandapathil M, Whiteside TL (2009) Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin. PLoS One 4 (6):e5994. doi:10.1371/journal.pone.0005994

  40. Schall TJ, Bacon K, Toy KJ, Goeddel DV (1990) Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine rantes. Nature 347(6294):669–671. doi:10.1038/347669a0

    Article  CAS  PubMed  Google Scholar 

  41. Mellado M, de Ana AM, Moreno MC, Martinez C, Rodriguez-Frade JM (2001) A potential immune escape mechanism by melanoma cells through the activation of chemokine-induced T cell death. Curr Biol 11(9):691–696

    Article  CAS  PubMed  Google Scholar 

  42. Cartier L, Dubois-Dauphin M, Hartley O, Irminger-Finger I, Krause KH (2003) Chemokine-induced cell death in ccr5-expressing neuroblastoma cells. J Neuroimmunol 145(1–2):27–39

    Article  CAS  PubMed  Google Scholar 

  43. Algeciras-Schimnich A, Vlahakis SR, Villasis-Keever A, Gomez T, Heppelmann CJ, Bou G, Paya CV (2002) Ccr5 mediates fas- and caspase-8 dependent apoptosis of both uninfected and HIV infected primary human CD4 T cells. AIDS 16(11):1467–1478

    Article  CAS  PubMed  Google Scholar 

  44. Calastretti A, Rancati F, Ceriani MC, Asnaghi L, Canti G, Nicolin A (2001) Rapamycin increases the cellular concentration of the bcl-2 protein and exerts an anti-apoptotic effect. Eur J Cancer 37(16):2121–2128

    Article  CAS  PubMed  Google Scholar 

  45. Cummings JS, Cairo C, Armstrong C, Davis CE, Pauza CD (2008) Impacts of HIV infection on vgamma2vdelta2 T cell phenotype and function: a mechanism for reduced tumor immunity in aids. J Leukoc Biol 84(2):371–379. doi:10.1189/jlb.1207847

    Article  CAS  PubMed  Google Scholar 

  46. Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW (2007) Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 178(11):7018–7031

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Cheryl Armstrong for technical assistance. We are grateful to Maria S Salvato for critical reading of the manuscript. This work was supported by PHS grant CA142458 (C.D.P.).

Conflict of interest

The authors have no financial conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David Pauza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Pauza, C.D. Rapamycin increases the yield and effector function of human γδ T cells stimulated in vitro. Cancer Immunol Immunother 60, 361–370 (2011). https://doi.org/10.1007/s00262-010-0945-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0945-7

Keywords

Navigation