Skip to main content

Advertisement

Log in

Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Nearly twenty years of experimental immunotherapy for malignant glioma yielded important insights in the mechanisms governing glioma immunology. Still considered promising, it is clear that immunotherapy does not on its own represent the magic bullet in glioma therapy. In this review, we summarize the major immunotherapeutic achievements in the mouse GL261 glioma model, which has emerged as the gold standard syngeneic model for experimental glioma therapy. Gene therapy, monoclonal antibody treatment, cytokine therapy, cell transfer strategies and dendritic cell therapy were hereby considered. Apart from the considerable progress made in understanding glioma immunology in this model, we also addressed its most pertinent issues and shortcomings. Despite these, the GL261 model will remain indispensable in glioma research since it is a fast, highly reproducible and easy-to-establish model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  Google Scholar 

  2. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4(4):278–299

    PubMed  Google Scholar 

  3. Nieder C, Grosu AL, Molls M (2000) A comparison of treatment results for recurrent malignant gliomas. Cancer Treat Rev 26(6):397–409

    Article  CAS  PubMed  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoom MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Eng J Med 352:987–996

    Article  CAS  Google Scholar 

  5. Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15(10):739–752

    Article  CAS  PubMed  Google Scholar 

  6. Aghi M, Chiocca EA (2006) Gene therapy for glioblastoma. Neurosurg Focus 20(4):E18

    PubMed  Google Scholar 

  7. Mason WP (2008) Emerging drugs for malignant glioma. Expert Opin Emerg Drugs 13(1):81–94

    Article  CAS  PubMed  Google Scholar 

  8. Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24(8):1253–1265

    Article  CAS  PubMed  Google Scholar 

  9. Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE et al (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85(2):133–148

    Article  PubMed  Google Scholar 

  10. Fomchenko EI, Holland EC (2006) Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 12(18):5288–5297

    Article  CAS  PubMed  Google Scholar 

  11. Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15(1):110–116

    Article  CAS  PubMed  Google Scholar 

  12. Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30(9):2394–2400

    CAS  PubMed  Google Scholar 

  13. Zimmerman HM, Arnold H (1941) Experimental brain tumors. I. Tumors produced with methylcholanthrene. Cancer Res 1:919–938

    CAS  Google Scholar 

  14. Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553

    Article  CAS  PubMed  Google Scholar 

  15. Daga A, Orengo AM, Gangemi RM, Marubbi D, Perera M, Comes A et al (2007) Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer 121(8):1756–1763

    Article  CAS  PubMed  Google Scholar 

  16. Segal BM, Glass DD, Shevach EM (2002) Cutting edge: IL-10-producing CD4+ T cells mediate tumor rejection. J Immunol 168(1):1–4

    CAS  PubMed  Google Scholar 

  17. Iizuka Y, Kojima H, Kobata T, Kawase T, Kawakami Y, Toda M (2006) Identification of a glioma antigen, GARC-1, using cytotoxic T lymphocytes induced by HSV cancer vaccine. Int J Cancer 118(4):942–949

    Article  CAS  PubMed  Google Scholar 

  18. Paul AK, Ciesielski MJ, Sajjad M, Wang X, Ferrone S, Abdel-Nabi H et al (2009) Expression of HMP/AN2, a melanoma associated antigen, in murine cerebral gliomas: potential for radioimmunotargeting. J Neurooncol 94(1):21–30

    Article  CAS  PubMed  Google Scholar 

  19. Ciesielski MJ, Kozbor D, Castanaro CA, Barone TA, Fenstermaker RA (2008) Therapeutic effect of a T helper cell supported CTL response induced by a survivin peptide vaccine against murine cerebral glioma. Cancer Immunol Immunother 57(12):1827–1835

    Article  CAS  PubMed  Google Scholar 

  20. Grauer OM, Sutmuller RP, van Maren W, Jacobs JF, Bennink E, Toonen LW et al (2008) Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 122(8):1794–1802

    Article  CAS  PubMed  Google Scholar 

  21. Maes W, Deroose C, Reumers V, Krylyshkina O, Gijsbers R, Baekelandt V et al (2009) In vivo bioluminescence imaging in an experimental mouse model for dendritic cell based immunotherapy against malignant glioma. J Neurooncol 91(2):127–139

    Article  CAS  PubMed  Google Scholar 

  22. Saris SC, Spiess P, Lieberman DM, Lin S, Walbridge S, Oldfield EH (1992) Treatment of murine primary brain tumors with systemic interleukin-2 and tumor-infiltrating lymphocytes. J Neurosurg 76(3):513–519

    Article  CAS  PubMed  Google Scholar 

  23. Plautz GE, Touhalisky JE, Shu S (1997) Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell Immunol 178(2):101–107

    Article  CAS  PubMed  Google Scholar 

  24. Kim JA, Averbook BJ, Chambers K, Rothchild K, Kjaergaard J, Papay R et al (2001) Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res 61(5):2031–2037

    CAS  PubMed  Google Scholar 

  25. Kjaergaard J, Tanaka J, Kim JA, Rothchild K, Weinberg A, Shu S (2000) Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res 60(19):5514–5521

    CAS  PubMed  Google Scholar 

  26. Kjaergaard J, Wang LX, Kuriyama H, Shu S, Plautz GE (2005) Active immunotherapy for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines. J Neurosurg 103(1):156–164

    Article  CAS  PubMed  Google Scholar 

  27. Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167

    Article  CAS  PubMed  Google Scholar 

  28. El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+ CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105(3):430–437

    Article  CAS  PubMed  Google Scholar 

  29. Maes W, Rosas GG, Verbinnen B, Boon L, De Vleeschouwer S, Ceuppens JL et al (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 11(5):529–542

    Article  CAS  PubMed  Google Scholar 

  30. Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G et al (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15(21):6551–6559

    Article  CAS  PubMed  Google Scholar 

  31. Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5(4):296–306

    Article  CAS  PubMed  Google Scholar 

  32. Finn OJ (2008) Cancer immunology. N Engl J Med 358(25):2704–2715

    Article  CAS  PubMed  Google Scholar 

  33. Ni HT, Spellman SR, Jean WC, Hall WA, Low WC (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51(1):1–9

    Article  CAS  PubMed  Google Scholar 

  34. Aoki H, Mizuno M, Natsume A, Tsugawa T, Tsujimura K, Takahashi T et al (2001) Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol Immunother 50(9):463–468

    Article  CAS  PubMed  Google Scholar 

  35. Insug O, Ku G, Ertl HC, Blaszczyk-Thurin M (2002) A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res 22(2A):613–621

    CAS  PubMed  Google Scholar 

  36. Saito R, Mizuno M, Nakahara N, Tsuno T, Kumabe T, Yoshimoto T et al (2004) Vaccination with tumor cell lysate-pulsed dendritic cells augments the effect of IFN-beta gene therapy for malignant glioma in an experimental mouse intracranial glioma. Int J Cancer 111(5):777–782

    Article  CAS  PubMed  Google Scholar 

  37. Tsugawa T, Kuwashima N, Sato H, Fellows-Mayle WK, Dusak JE, Okada K (2004) Sequential delivery of interferon-alpha gene and DCs to intracranial gliomas promotes an effective antitumor response. Gene Ther 11(21):1551–1558

    Article  CAS  PubMed  Google Scholar 

  38. Kuwashima N, Nishimura F, Eguchi J, Sato H, Hatano M, Tsugawa T et al (2005) Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175(4):2730–2740

    CAS  PubMed  Google Scholar 

  39. Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B et al (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66(21):10247–10252

    Article  CAS  PubMed  Google Scholar 

  40. Pellegatta S, Poliani PL, Corno D, Grisoli M, Cusimano M, Ubiali F et al (2006) Dendritic cells pulsed with glioma lysates induce immunity against syngeneic intracranial gliomas and increase survival of tumor-bearing mice. Neurol Res 28(5):527–531

    Article  CAS  PubMed  Google Scholar 

  41. Jiang XB, Lu XL, Hu P, Liu RE (2009) Improved therapeutic efficacy using vaccination with glioma lysate-pulsed dendritic cells combined with IP-10 in murine glioma. Vaccine 27(44):6210–6216

    Article  CAS  PubMed  Google Scholar 

  42. Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63(23):8487–8491

    CAS  PubMed  Google Scholar 

  43. Ciesielski MJ, Apfel L, Barone TA, Castro CA, Weiss TC, Fenstermaker RA (2006) Antitumor effects of a xenogeneic survivin bone marrow derived dendritic cell vaccine against murine GL261 gliomas. Cancer Immunol Immunother 55(12):1491–1503

    Article  CAS  PubMed  Google Scholar 

  44. Ciesielski MJ, Ahluwalia MS, Munich SA, Orton M, Barone T, Chanan-Khan A et al (2010) Antitumor cytotoxic T-cell response induced by a survivin peptide mimic. Cancer Immunol Immunother 59(8):1211–1221

    Article  CAS  PubMed  Google Scholar 

  45. Fujita M, Zhu X, Ueda R, Sasaki K, Kohanbash G, Kastenhuber ER et al (2009) Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells—significant roles of CXCL10. Cancer Res 69(4):1587–1595

    Article  CAS  PubMed  Google Scholar 

  46. Lichtor T, Glick RP, Kim TS, Hand R, Cohen EP (1995) Prolonged survival of mice with glioma injected intracerebrally with double cytokine-secreting cells. J Neurosurg 83(6):1038–1044

    Article  CAS  PubMed  Google Scholar 

  47. Glick RP, Lichtor T, Panchal R, Mahendra A, Cohen EP (2003) Treatment with allogeneic interleukin-2 secreting fibroblasts protects against the development of malignant brain tumors. J Neurooncol 64(1–2):139–146

    PubMed  Google Scholar 

  48. Spagnolo A, Glick RP, Lin H, Cohen EP, Feinstein DL, Lichtor T (2007) Prolonged survival of mice with established intracerebral glioma receiving combined treatment with peroxisome proliferator-activated receptor-gamma thiazolidinedione agonists and interleukin-2-secreting syngeneic/allogeneic fibroblasts. J Neurosurg 106(2):299–305

    Article  CAS  PubMed  Google Scholar 

  49. Herrlinger U, Kramm CM, Johnston KM, Louis DN, Finkelstein D, Reznikoff G et al (1997) Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther 4(6):345–352

    CAS  PubMed  Google Scholar 

  50. Herrlinger U, Jacobs A, Quinones A, Woiciechowsky C, Sena-Esteves M, Rainov NG et al (2000) Helper virus-free herpes simplex virus type 1 amplicon vectors for granulocyte-macrophage colony-stimulating factor-enhanced vaccination therapy for experimental glioma. Hum Gene Ther 11(10):1429–1438

    Article  CAS  PubMed  Google Scholar 

  51. Yu JS, Burwick JA, Dranoff G, Breakefield XO (1997) Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 8(9):1065–1072

    Article  CAS  PubMed  Google Scholar 

  52. Newcomb EW, Demaria S, Lukyanov Y, Shao Y, Schnee T, Kawashima N et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12(15):4730–4737

    Article  CAS  PubMed  Google Scholar 

  53. Natsume A, Mizuno M, Ryuke Y, Yoshida J (1999) Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther 6(9):1626–1633

    Article  CAS  PubMed  Google Scholar 

  54. Natsume A, Tsujimura K, Mizuno M, Takahashi T, Yoshida J (2000) IFN-beta gene therapy induces systemic antitumor immunity against malignant glioma. J Neurooncol 47(2):117–124

    Article  CAS  PubMed  Google Scholar 

  55. Blaszczyk-Thurin M, Ertl IO, Ertl HC (2002) An experimental vaccine expressing wild-type p53 induces protective immunity against glioblastoma cells with high levels of endogenous p53. Scand J Immunol 56(4):361–375

    Article  CAS  PubMed  Google Scholar 

  56. Wu A, Oh S, Ericson K, Demorest ZL, Vengco I, Gharagozlou S (2007) Transposon-based interferon gamma gene transfer overcomes limitations of episomal plasmid for immunogene therapy of glioblastoma. Cancer Gene Ther 14(6):550–560

    Article  CAS  PubMed  Google Scholar 

  57. Sonabend AM, Velicu S, Ulasov IV, Han Y, Tyler B, Brem H et al (2008) A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anticancer Drugs 19(2):133–142

    Article  CAS  PubMed  Google Scholar 

  58. Vetter M, Hofer MJ, Roth E, Pircher HP, Pagenstecher A (2009) Intracerebral interleukin 12 induces glioma rejection in the brain predominantly by CD8+ T cells and independently of interferon-gamma. J Neuropathol Exp Neurol 68(5):525–534

    Article  CAS  PubMed  Google Scholar 

  59. Enderlin M, Kleinmann EV, Struyf S, Buracchi C, Vecchi A, Kinscherf R et al (2009) TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther 16(2):149–160

    Article  CAS  PubMed  Google Scholar 

  60. El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54(6):526–535

    Article  PubMed  Google Scholar 

  61. Grauer OM, Molling JW, Bennink E, Toonen LW, Sutmuller RP, Nierkens S et al (2008) TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 181(10):6720–6729

    CAS  PubMed  Google Scholar 

  62. Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J et al (2007) Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 5:10

    Article  PubMed  Google Scholar 

  63. Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10(a):133–146

    PubMed  Google Scholar 

  64. Fujita M, Zhu X, Sasaki K, Ueda R, Low KL, Pollack IF et al (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180(4):2089–2098

    CAS  PubMed  Google Scholar 

  65. Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57(13):1458–1467

    Article  PubMed  Google Scholar 

  66. De Vleeschouwer S, Rapp M, Sorg RV, Steiger HJ, Stummer W, Van Gool S et al (2006) Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 59(5):988–999

    PubMed  Google Scholar 

  67. Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45(2):141–157

    Article  CAS  PubMed  Google Scholar 

  68. June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117(6):1466–1476

    Article  CAS  PubMed  Google Scholar 

  69. Bigner DD, Brown M, Coleman RE, Friedman AH, Friedman HS, McLendon RE et al (1995) Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab′)2—a preliminary report. J Neurooncol 24(1):109–122

    Article  CAS  PubMed  Google Scholar 

  70. Boskovitz A, Wikstrand CJ, Kuan CT, Zalutsky MR, Reardon DA, Bigner DD (2004) Monoclonal antibodies for brain tumour treatment. Expert Opin Biol Ther 4(9):1453–1471

    Article  CAS  PubMed  Google Scholar 

  71. Parajuli P, Sloan AE (2004) Dendritic cell-based immunotherapy of malignant gliomas. Cancer Invest 22(3):405–416

    Article  CAS  PubMed  Google Scholar 

  72. Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68(14):5955–5964

    Article  CAS  PubMed  Google Scholar 

  73. De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J et al (2008) Clinical experience of postoperative adjuvant dendritic cell-based immunotherapy in a large group of patients with relapsed glioblastoma multiforme. Clin Cancer Res 14(10):3098–3104

    Article  PubMed  Google Scholar 

  74. Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G et al (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 99(2):261–272

    Article  CAS  PubMed  Google Scholar 

  75. Rainov NG, Ren H (2003) Gene therapy for human malignant brain tumors. Cancer J 9(3):180–188

    Article  CAS  PubMed  Google Scholar 

  76. Andersen MH, Sorensen RB, Schrama D, Svane IM, Becker JC, Thor SP (2008) Cancer treatment: the combination of vaccination with other therapies. Cancer Immunol Immunother 57(11):1735–1743

    Article  CAS  PubMed  Google Scholar 

  77. Kim TG, Kim CH, Park JS, Park SD, Kim CK, Chung DS et al (2010) Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin Vaccine Immunol 17(1):143–153

    Article  CAS  PubMed  Google Scholar 

  78. Liu G, Black KL, Yu JS (2006) Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination. Expert Rev Vaccines 5(2):233–247

    Article  CAS  PubMed  Google Scholar 

  79. Schlegel PG, Eyrich M, Kramm C, Van Gool S (2010) Tumor vaccination for high-grade glioma. Pediatr Blood Cancer 55(7):1437

    Article  PubMed  Google Scholar 

  80. Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56(5):641–648

    Article  CAS  PubMed  Google Scholar 

  81. Lichtor T, Glick RP, Tarlock K, Moffett S, Mouw E, Cohen EP (2002) Application of interleukin-2-secreting syngeneic/allogeneic fibroblasts in the treatment of primary and metastatic brain tumors. Cancer Gene Ther 9(5):464–469

    Article  CAS  PubMed  Google Scholar 

  82. Herrlinger U, Aulwurm S, Strik H, Weit S, Naumann U, Weller M (2004) MIP-1alpha antagonizes the effect of a GM-CSF-enhanced subcutaneous vaccine in a mouse glioma model. J Neurooncol 66(1–2):147–154

    Article  PubMed  Google Scholar 

  83. Smith KE, Janelidze S, Visse E, Badn W, Salford L, Siesjo P et al (2007) Synergism between GM-CSF and IFNgamma: enhanced immunotherapy in mice with glioma. Int J Cancer 120(1):75–80

    Article  CAS  PubMed  Google Scholar 

  84. Smith KE, Fritzell S, Badn W, Eberstal S, Janelidze S, Visse E (2009) Cure of established GL261 mouse gliomas after combined immunotherapy with GM-CSF and IFNgamma is mediated by both CD8+ and CD4+ T-cells. Int J Cancer 124(3):630–637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Olivia Hendrickx Research Fund (http://www.olivia.be). Support was also obtained from Electrabel Netmanagement Vlaanderen, CAF Belgium, Baxter, the Herman Memorial Research Fund (http://www.hmrf.be), the James E. Kearney Memorial Fund and gifts from private families and service clubs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefaan W. Van Gool.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maes, W., Van Gool, S.W. Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model. Cancer Immunol Immunother 60, 153–160 (2011). https://doi.org/10.1007/s00262-010-0946-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0946-6

Keywords

Navigation