Skip to main content

Advertisement

Log in

Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Toll-like receptor (TLR) agonists can trigger broad inflammatory responses that elicit rapid innate immunity and promote the activities of lymphocytes, which can potentially enhance adoptive immunotherapy in the tumor-bearing setting. In the present study, we found that Polyinosinic:Polycytidylic Acid [Poly(I:C)] and CpG oligodeoxynucleotide 1826 [CpG], agonists for TLR 3 and 9, respectively, potently activated adoptively transferred T cells against a murine model of established melanoma. Intratumoral injection of Poly(I:C) and CpG, combined with systemic transfer of activated pmel-1 T cells, specific for gp10025–33, led to enhanced survival and eradication of 9-day established subcutaneous B16F10 melanomas in a proportion of mice. A series of survival studies in knockout mice supported a key mechanistic pathway, whereby TLR agonists acted via host cells to enhance IFN-γ production by adoptively transferred T cells. IFN-γ, in turn, enhanced the immunogenicity of the B16F10 melanoma line, leading to increased killing by adoptively transferred T cells. Thus, this combination approach counteracted tumor escape from immunotherapy via downregulation of immunogenicity. In conclusion, TLR agonists may represent advanced adjuvants within the setting of adoptive T-cell immunotherapy of cancer and hold promise as a safe means of enhancing this approach within the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321

    Article  PubMed  CAS  Google Scholar 

  2. Dudley ME, Rosenberg SA (2003) Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 3:666–675

    Article  PubMed  CAS  Google Scholar 

  3. Field AK, Tytell AA, Lampson GP, Hilleman MR (1967) Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc Natl Acad Sci USA 58:1004–1010

    Article  PubMed  CAS  Google Scholar 

  4. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549

    Article  PubMed  CAS  Google Scholar 

  5. Westwood JA, Darcy PK, Guru PM, Sharkey J, Pegram HJ, Amos SM, Smyth MJ, Kershaw MH (2010) Three agonist antibodies in combination with high-dose IL-2 eradicate orthotopic kidney cancer in mice. J Transl Med 8:42

    Article  PubMed  Google Scholar 

  6. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239

    Article  PubMed  CAS  Google Scholar 

  7. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M et al (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  PubMed  CAS  Google Scholar 

  8. Schwartzentruber DJ (2001) Guidelines for the safe administration of high-dose interleukin-2. J Immunother 24:287–293

    Article  PubMed  CAS  Google Scholar 

  9. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  10. Kawai T, Akira S (2008) Toll-like receptor, RIG-I-like receptor signaling. Ann N Y Acad Sci 1143:1–20

    Article  PubMed  CAS  Google Scholar 

  11. Fukata M, Vamadevan AS, Abreu MT (2009) Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 21:242–253

    Article  PubMed  CAS  Google Scholar 

  12. Pasare C, Medzhitov R (2005) Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 560:11–18

    Article  PubMed  CAS  Google Scholar 

  13. Huang CC, Duffy KE, San Mateo LR, Amegadzie BY, Sarisky RT, Mbow ML (2006) A pathway analysis of poly(I:C)-induced global gene expression change in human peripheral blood mononuclear cells. Physiol Genomics 26:125–133

    Article  PubMed  Google Scholar 

  14. Klaschik S, Gursel I, Klinman DM (2007) CpG-mediated changes in gene expression in murine spleen cells identified by microarray analysis. Mol Immunol 44:1095–1104

    Article  PubMed  CAS  Google Scholar 

  15. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6:769–776

    Article  PubMed  CAS  Google Scholar 

  16. Tross D, Petrenko L, Klaschik S, Zhu Q, Klinman DM (2009) Global changes in gene expression and synergistic interactions induced by TLR9 and TLR3. Mol Immunol 46:2557–2564

    Article  PubMed  CAS  Google Scholar 

  17. Salem ML, Kadima AN, Cole DJ, Gillanders WE (2005) Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother 28:220–228

    Article  PubMed  CAS  Google Scholar 

  18. Salem ML, Diaz-Montero CM, Al-Khami AA, El-Naggar SA, Naga O, Montero AJ, Khafagy A, Cole DJ (2009) Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C). J Immunol 182:2030–2040

    Article  PubMed  CAS  Google Scholar 

  19. Kohlmeyer J, Cron M, Landsberg J, Bald T, Renn M, Mikus S, Bondong S, Wikasari D, Gaffal E, Hartmann G, Tuting T (2009) Complete regression of advanced primary and metastatic mouse melanomas following combination chemoimmunotherapy. Cancer Res 69:6265–6274

    Article  PubMed  CAS  Google Scholar 

  20. Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61:195–204

    Article  PubMed  CAS  Google Scholar 

  21. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, Mayer L, Unkeless JC, Xiong H (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65:5009–5014

    Article  PubMed  CAS  Google Scholar 

  22. Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J Neuroimmunol 159:12–19

    Article  PubMed  CAS  Google Scholar 

  23. Pedersen G, Andresen L, Matthiessen MW, Rask-Madsen J, Brynskov J (2005) Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin Exp Immunol 141:298–306

    Article  PubMed  CAS  Google Scholar 

  24. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    PubMed  CAS  Google Scholar 

  25. Muzio M, Bosisio D, Polentarutti N, D’Amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004

    PubMed  CAS  Google Scholar 

  26. Finkelstein SE, Heimann DM, Klebanoff CA, Antony PA, Gattinoni L, Hinrichs CS, Hwang LN, Palmer DC, Spiess PJ, Surman DR, Wrzesiniski C, Yu Z et al (2004) Bedside to bench and back again: how animal models are guiding the development of new immunotherapies for cancer. J Leukoc Biol 76:333–337

    Article  PubMed  CAS  Google Scholar 

  27. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA et al (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8 + T cells. J Exp Med 198:569–580

    Article  PubMed  CAS  Google Scholar 

  28. Brunner KT, Mauel J, Cerottini JC, Chapuis B (1968) Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14:181–196

    PubMed  CAS  Google Scholar 

  29. Hendrix CW, Margolick JB, Petty BG, Markham RB, Nerhood L, Farzadegan H, Ts’o PO, Lietman PS (1993) Biologic effects after a single dose of poly(I):poly(C12U) in healthy volunteers. Antimicrob Agents Chemother 37:429–435

    PubMed  CAS  Google Scholar 

  30. Hofmann MA, Kors C, Audring H, Walden P, Sterry W, Trefzer U (2008) Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother 31:520–527

    Article  PubMed  CAS  Google Scholar 

  31. Robinson RA, DeVita VT, Levy HB, Baron S, Hubbard SP, Levine AS (1976) A phase I-II trial of multiple-dose polyriboinosic-polyribocytidylic acid in patieonts with leukemia or solid tumors. J Natl Cancer Inst 57:599–602

    PubMed  CAS  Google Scholar 

  32. Link BK, Ballas ZK, Weisdorf D, Wooldridge JE, Bossler AD, Shannon M, Rasmussen WL, Krieg AM, Weiner GJ (2006) Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J Immunother 29:558–568

    Article  PubMed  CAS  Google Scholar 

  33. Molenkamp BG, Sluijter BJ, van Leeuwen PA, Santegoets SJ, Meijer S, Wijnands PG, Haanen JB, van den Eertwegh AJ, Scheper RJ, de Gruijl TD (2008) Local administration of PF-3512676 CpG-B instigates tumor-specific CD8 + T-cell reactivity in melanoma patients. Clin Cancer Res 14:4532–4542

    Article  PubMed  CAS  Google Scholar 

  34. Sharma S, Karakousis CP, Takita H, Shin K, Brooks SP (2003) Intra-tumoral injection of CpG results in the inhibition of tumor growth in murine Colon-26 and B-16 tumors. Biotechnol Lett 25:149–153

    Article  PubMed  CAS  Google Scholar 

  35. Pashenkov M, Goess G, Wagner C, Hormann M, Jandl T, Moser A, Britten CM, Smolle J, Koller S, Mauch C, Tantcheva-Poor I, Grabbe S et al (2006) Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol 24:5716–5724

    Article  PubMed  CAS  Google Scholar 

  36. Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, Kim YH, Hoppe RT, Knox SJ, Shin LK, Wapnir I, Tibshirani RJ et al (2010) In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 28:4324–4332

    Article  PubMed  Google Scholar 

  37. Garbi N, Arnold B, Gordon S, Hammerling GJ, Ganss R (2004) CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction. J Immunol 172:5861–5869

    PubMed  CAS  Google Scholar 

  38. Verdeil G, Marquardt K, Surh CD, Sherman LA (2008) Adjuvants targeting innate and adaptive immunity synergize to enhance tumor immunotherapy. Proc Natl Acad Sci USA 105:16683–16688

    Article  PubMed  CAS  Google Scholar 

  39. Lou Y, Wang G, Lizee G, Kim GJ, Finkelstein SE, Feng C, Restifo NP, Hwu P (2004) Dendritic cells strongly boost the antitumor activity of adoptively transferred T cells in vivo. Cancer Res 64:6783–6790

    Article  PubMed  CAS  Google Scholar 

  40. Gasperini S, Marchi M, Calzetti F, Laudanna C, Vicentini L, Olsen H, Murphy M, Liao F, Farber J, Cassatella MA (1999) Gene expression and production of the monokine induced by IFN-gamma (MIG), IFN-inducible T cell alpha chemoattractant (I-TAC), and IFN-gamma-inducible protein-10 (IP-10) chemokines by human neutrophils. J Immunol 162:4928–4937

    PubMed  CAS  Google Scholar 

  41. Taub DD, Lloyd AR, Conlon K, Wang JM, Ortaldo JR, Harada A, Matsushima K, Kelvin DJ, Oppenheim JJ (1993) Recombinant human interferon-inducible protein 10 is a chemoattractant for human monocytes and T lymphocytes and promotes T cell adhesion to endothelial cells. J Exp Med 177:1809–1814

    Article  PubMed  CAS  Google Scholar 

  42. Inngjerdingen M, Damaj B, Maghazachi AA (2001) Expression and regulation of chemokine receptors in human natural killer cells. Blood 97:367–375

    Article  PubMed  CAS  Google Scholar 

  43. Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227:54–65

    Article  PubMed  CAS  Google Scholar 

  44. Kumar H, Koyama S, Ishii KJ, Kawai T, Akira S (2008) Cutting edge: cooperation of IPS-1- and TRIF-dependent pathways in poly IC-enhanced antibody production and cytotoxic T cell responses. J Immunol 180:683–687

    PubMed  CAS  Google Scholar 

  45. Seliger B, Wollscheid U, Momburg F, Blankenstein T, Huber C (2001) Characterization of the major histocompatibility complex class I deficiencies in B16 melanoma cells. Cancer Res 61:1095–1099

    PubMed  CAS  Google Scholar 

  46. Dighe AS, Richards E, Old LJ, Schreiber RD (1994) Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity 1:447–456

    Article  PubMed  CAS  Google Scholar 

  47. Sgagias MK, Nieroda C, Yannelli JR, Cowan KH, Danforth DN Jr (1996) Upregulation of DF3, in association with ICAM-1 and MHC class II by IFN-gamma in short-term human mammary carcinoma cell cultures. Cancer Biother Radiopharm 11:177–185

    Article  PubMed  CAS  Google Scholar 

  48. Ersvaer E, Skavland J, Ulvestad E, Gjertsen BT, Bruserud O (2007) Effects of interferon gamma on native human acute myelogenous leukaemia cells. Cancer Immunol Immunother 56:13–24

    Article  PubMed  CAS  Google Scholar 

  49. Dovhey SE, Ghosh NS, Wright KL (2000) Loss of interferon-gamma inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line. Cancer Res 60:5789–5796

    PubMed  CAS  Google Scholar 

  50. Klebanoff CA, Yu Z, Hwang LN, Palmer DC, Gattinoni L, Restifo NP (2009) Programming tumor-reactive effector memory CD8 + T cells in vitro obviates the requirement for in vivo vaccination. Blood 114:1776–1783

    Article  PubMed  CAS  Google Scholar 

  51. Miller RE, Jones J, Le T, Whitmore J, Boiani N, Gliniak B, Lynch DH (2002) 4–1BB-specific monoclonal antibody promotes the generation of tumor-specific immune responses by direct activation of CD8 T cells in a CD40-dependent manner. J Immunol 169:1792–1800

    PubMed  CAS  Google Scholar 

  52. Korman AJ, Peggs KS, Allison JP (2006) Checkpoint blockade in cancer immunotherapy. Adv Immunol 90:297–339

    Article  PubMed  CAS  Google Scholar 

  53. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103:6315–6320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health and Medical Research Council of Australia (NHMRC), Cancer Council of Victoria and The Bob Parker Memorial Fund. M.K. is supported by a Senior Research Fellowship from the NHMRC. P.D. is supported by an NHMRC Career Development Award, M.J.S. is supported by an Australia Fellowship from the NHMRC and S.A. is supported by a Cancer Council of Victoria Postgraduate Cancer Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Kershaw.

Additional information

P. K. Darcy and M. H. Kershaw have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3400 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amos, S.M., Pegram, H.J., Westwood, J.A. et al. Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice. Cancer Immunol Immunother 60, 671–683 (2011). https://doi.org/10.1007/s00262-011-0984-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-0984-8

Keywords

Navigation