Skip to main content

Advertisement

Log in

Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

In spite of increased rates of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. Immunotherapy may have potential for consolidation therapy.

Experimental design

This randomized open-label phase I/II trial evaluated responses of patients with advanced ovarian cancer in remission for vaccination with monocyte-derived dendritic cells (DC) loaded with Her2/neu, hTERT, and PADRE peptides, with or without low-dose intravenous cyclophosphamide. All patients also received pneumococcal vaccine and were randomized to cyclophosphamide 2 days prior to first vaccination. Blood samples were analyzed by ELISPOT and flow cytometry.

Results

Of 11 patients, 2 recurred during vaccination. Nine received all 4 doses: 3 patients recurred at 6, 17, and 26 months, respectively, and 6 have no evidence of disease at 36 months. No grade 3/4 vaccine-related toxicities were noted. The 3-year overall survival was 90%. Patients receiving cyclophosphamide showed a non-significant improvement in survival over controls. Patients receiving cyclophosphamide had a transient reduction in neutrophils, but no change in total lymphocytes or regulatory T cells. Modest T-cell responses to Her2/neu and hTERT were seen post-vaccine by IFN-γ ELISPOT. Patients demonstrated below normal responses to the diphtheria conjugate protein CRM197, a component of the pneumococcal vaccine.

Conclusions

In this setting, peptide-loaded DC vaccination elicits modest immune responses, but survival is promising. Pneumococcal vaccination revealed substantial immune suppression, even in patients in remission. Rational design of consolidative strategies for ovarian cancer will need to overcome tolerance and immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  2. Ozols RF (2002) Recurrent ovarian cancer: evidence-based treatment. J Clin Oncol 20:1161–1163

    PubMed  Google Scholar 

  3. McGuire WP, Ozols RF (1998) Chemotherapy of advanced ovarian cancer. Semin Oncol 25:340–348

    PubMed  CAS  Google Scholar 

  4. Rubin SC, Randall TC, Armstrong KA, Chi DS, Hoskins WJ (1999) Ten-year follow-up of ovarian cancer patients after second-look laparotomy with negative findings. Obstet Gynecol 93:21–24

    Article  PubMed  CAS  Google Scholar 

  5. Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    Article  PubMed  CAS  Google Scholar 

  6. Sabbatini P, Odunsi K (2007) Immunologic approaches to ovarian cancer treatment. J Clin Oncol 25:2884–2893

    Article  PubMed  CAS  Google Scholar 

  7. Nelson BH (2008) The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116

    Article  PubMed  CAS  Google Scholar 

  8. Woo EY, Chu CS, Goletz TJ, Schlienger K, Coukos G, Rubin SC, Kaiser LR, June CH (2001) Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    PubMed  CAS  Google Scholar 

  9. Tange S, Scherer MN, Graeb C, Weiss T, Justl M, Frank E, Andrassy J, Jauch KW, Geissler EK (2002) The antineoplastic drug paclitaxel has immunosuppressive properties that can effectively promote allograft survival in a rat heart transplant model1. Transplantation 73:216

    Article  PubMed  CAS  Google Scholar 

  10. Si MS, Imagawa DK, Ji P, Wei X, Holm B, Kwok J, Lee M, Reitz BA, Borie DC (2003) Immunomodulatory effects of docetaxel on human lymphocytes. Investig New Drugs 21:281–290

    Article  CAS  Google Scholar 

  11. Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306

    Article  PubMed  CAS  Google Scholar 

  12. Tacken PJ, de Vries IJ, Torensma R, Figdor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802

    Article  PubMed  CAS  Google Scholar 

  13. Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809–8814

    Article  PubMed  CAS  Google Scholar 

  14. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  PubMed  CAS  Google Scholar 

  15. Hellstrom I, Goodman G, Pullman J, Yang Y, Hellstrom KE (2001) Overexpression of HER-2 in ovarian carcinomas. Cancer Res 61:2420–2423

    PubMed  CAS  Google Scholar 

  16. Ross JS, Fletcher JA (1999) The HER-2/neu oncogene: prognostic factor, predictive factor and target for therapy. Semin Cancer Biol 9:125–138

    Article  PubMed  CAS  Google Scholar 

  17. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM (1999) The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10:673–679

    Article  PubMed  CAS  Google Scholar 

  18. Vonderheide RH (2002) Telomerase as a universal tumor-associated antigen for cancer immunotherapy. Oncogene 21:674–679

    Article  PubMed  CAS  Google Scholar 

  19. Alexander J, Sidney J, Southwood S et al (1994) Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1:751–761

    Article  PubMed  CAS  Google Scholar 

  20. Wierecky J, Muller MR, Wirths S et al (2006) Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients. Cancer Res 66:5910–5918

    Article  PubMed  CAS  Google Scholar 

  21. Hung CF, Tsai YC, He L, Wu TC (2007) DNA vaccines encoding Ii-PADRE generates potent PADRE-specific CD4+ T-cell immune responses and enhances vaccine potency. Mol Ther 15:1211–1219

    PubMed  CAS  Google Scholar 

  22. Alexander J, del Guercio M, Maewal A et al (2000) Linear PADRE T helper epitope and carbohydrate B cell epitope conjugates induce specific high titer IgG antibody responses. J Immunol 164:1625

    PubMed  CAS  Google Scholar 

  23. North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074

    Article  PubMed  CAS  Google Scholar 

  24. Berd D, Mastrangelo MJ, Engstrom PF, Paul A, Maguire H (1982) Augmentation of the human immune response by cyclophosphamide. Cancer Res 42:4862–4866

    PubMed  CAS  Google Scholar 

  25. Ercolini AM, Ladle BH, Manning EA et al (2005) Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 201:1591–1602

    Article  PubMed  CAS  Google Scholar 

  26. Shah CA, Allison KH, Garcia RL, Gray HJ, Goff BA, Swisher EM (2008) Intratumoral T cells, tumor-associated macrophages, and regulatory T cells: association with p53 mutations, circulating tumor DNA and survival in women with ovarian cancer. Gynecol Oncol 109:215–219

    Article  PubMed  CAS  Google Scholar 

  27. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  28. Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543

    Article  PubMed  CAS  Google Scholar 

  29. Scardino A, Gross DA, Alves P et al (2002) HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168:5900–5906

    PubMed  CAS  Google Scholar 

  30. Zaks TZ, Rosenberg SA (1998) Immunization with a peptide epitope (p369–377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 58:4902–4908

    PubMed  CAS  Google Scholar 

  31. Knutson KL, Schiffman K, Cheever MA, Disis ML (2002) Immunization of cancer patients with a HER-2/neu, HLA-A2 peptide, p369–377, results in short-lived peptide-specific immunity. Clin Cancer Res 8:1014–1018

    PubMed  CAS  Google Scholar 

  32. Kono K, Takahashi A, Sugai H, Fujii H, Choudhury AR, Kiessling R, Matsumoto Y (2002) Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res 8:3394–3400

    PubMed  CAS  Google Scholar 

  33. Rongcun Y, Salazar-Onfray F, Charo J et al (1999) Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 163:1037–1044

    PubMed  CAS  Google Scholar 

  34. Kavanagh B, Ko A, Venook A et al (2007) Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother 30:762–772

    Article  PubMed  CAS  Google Scholar 

  35. Kamboj K, Kirchner H, Kimmel R, Greenspan N, Schreiber J (2003) Significant variation in serotype-specific immunogenicity of the seven-valent Streptococcus pneumoniae capsular polysaccharide-CRM_197 conjugate vaccine occurs despite vigorous T cell help induced by the carrier protein. J Infect Dis 187:1629–1638

    Article  PubMed  Google Scholar 

  36. Rapoport A, Stadtmauer EA, Aqui N et al (2005) Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nat Med 11:1230–1237

    Article  PubMed  CAS  Google Scholar 

  37. Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA, Horowitz IR (2003) Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the gynecologic oncology group. J Clin Oncol 21:283–290

    Article  PubMed  CAS  Google Scholar 

  38. Awwad M, North RJ (1989) Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res 49:1649–1654

    PubMed  CAS  Google Scholar 

  39. Ghiringhelli F, Menard C, Puig P et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    Article  PubMed  CAS  Google Scholar 

  40. Audia S, Nicolas A, Cathelin D et al (2007) Increase of CD4+CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a Phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+ T lymphocytes. Clin Exp Immunol 150:523–530

    Article  PubMed  CAS  Google Scholar 

  41. Laheru D, Lutz E, Burke J et al (2008) Allogeneic granulocyte macrophage colony-stimulating factor–secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res 14:1455–1463

    Article  PubMed  CAS  Google Scholar 

  42. Emens L, Asquith J, Leatherman J et al (2009) Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor–secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 27:5911–5918

    Article  PubMed  CAS  Google Scholar 

  43. Colombo M, Piconese S (2007) Regulatory T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 7:880–887

    Article  PubMed  CAS  Google Scholar 

  44. Greten T, Ormandy L, Fikuart A, Höchst B, Henschen S, Hörning M, Manns M, Korangy F (2010) Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J Immunother 33:211–218

    Article  PubMed  CAS  Google Scholar 

  45. Buzzi S, Rubboli D, Buzzi G, Buzzi A, Morisi C, Pironi F (2004) CRM197 (nontoxic diphtheria toxin): effects on advanced cancer patients. Cancer Immunol Immunother 53:1041–1048

    Article  PubMed  CAS  Google Scholar 

  46. Rapoport AP, Aqui NA, Stadtmauer EA et al (2011) Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination based on hTERT and survivin following ASCT for myeloma. Blood 117:788–797

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the support from Bonnie Mills at IDM, Inc. This study is dedicated to the memories of Cynthia R. June and Richard G. Carroll. In addition, we thank members of the Human Immunology Core (Abramson Cancer Center) for analysis of patient samples, and patients in the Ovarian Cancer Research Center for participating in this research protocol. This study is financially supported by NIH grants R21CA115049 (CC), 5P50CA083638 SPORE in Ovarian Cancer (GC PAG and CHJ), Cancer Biostatistics Training Grant T32CA093283 and the Ovarian Cancer Research Fund (GC and CHJ).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina S. Chu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 242 kb)

Supplementary material 2 (PPTX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, C.S., Boyer, J., Schullery, D.S. et al. Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol Immunother 61, 629–641 (2012). https://doi.org/10.1007/s00262-011-1081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1081-8

Keywords

Navigation