Skip to main content

Advertisement

Log in

Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

Pharmacologic DNA hypomethylation holds strong promises in cancer immunotherapy due to its immunomodulatory activity on neoplastic cells. Searching for more efficient DNA hypomethylating agents to be utilized to design novel immunotherapeutic strategies in cancer, we investigated the immunomodulatory properties of the new DNA hypomethylating agent SGI-110, that is resistant to in vivo inactivation by cytidine deaminase.

Experimental design

Cutaneous melanoma, mesothelioma, renal cell carcinoma, and sarcoma cells were treated in vitro with SGI-110. RT-PCR, quantitative RT-PCR, quantitative methylation-specific PCR, and flow cytometric analyses were performed to investigate changes induced by SGI-110 in the constitutive immune profile of cancer cells. The recognition by gp100-specific CTL of gp100-positive melanoma cells, treated or not with SGI-110, was tested by LDH release assays.

Results

SGI-110 induced/up-regulated the expression of investigated cancer/testis antigens (CTA) (i.e., MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A10, GAGE 1-2, GAGE 1-6, NY-ESO-1, and SSX 1-5) in all cancer cell lines studied, both at mRNA and at protein levels. Quantitative methylation-specific PCR analyses identified a hypomethylation of MAGE-A1 and NY-ESO-1 promoters in SGI-110-treated neoplastic cells, demonstrating a direct role of pharmacologic DNA demethylation in CTA induction. SGI-110 also up-regulated the expression of HLA class I antigens and of ICAM-1, resulting in an improved recognition of cancer cells by gp100-specific CTL.

Conclusions

Our findings show that SGI-110 is a highly attractive therapeutic agent to comprehensively increase immunogenicity and immune recognition of neoplastic cells, and provide the scientific rationale for its clinical development to design novel chemo-immunotherapeutic approaches in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sigalotti L, Fratta E, Coral S et al (2007) Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. J Cell Physiol 212:330–344. doi:10.1002/jcp.21066

    Article  PubMed  CAS  Google Scholar 

  2. Fratta E, Sigalotti L, Colizzi F et al (2010) Epigenetically regulated clonal heritability of CTA expression profiles in human melanoma. J Cell Physiol 223:352–358. doi:10.1002/jcp.22040

    PubMed  CAS  Google Scholar 

  3. Fonsatti E, Nicolay HJ, Sigalotti L et al (2007) Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 13:3333–3338. doi:10.1158/1078-0432.CCR-06-3091

    Article  PubMed  CAS  Google Scholar 

  4. Coral S, Sigalotti L, Colizzi F et al (2006) Phenotypic and functional changes of human melanoma xenografts induced by DNA hypomethylation: immunotherapeutic implications. J Cell Physiol 207:58–66. doi:10.1002/jcp.20540

    Article  PubMed  CAS  Google Scholar 

  5. Sigalotti L, Fratta E, Coral S et al (2004) Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 64:9167–9171. doi:10.1158/0008-5472.CAN-04-1442

    Article  PubMed  CAS  Google Scholar 

  6. Schrump DS, Fischette MR, Nguyen DM et al (2006) Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 12:5777–5785. doi:10.1158/1078-0432.CCR-06-0669

    Article  PubMed  CAS  Google Scholar 

  7. Weiser TS, Guo ZS, Ohnmacht GA et al (2001) Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. J Immunother 24:151–161

    Article  PubMed  CAS  Google Scholar 

  8. Weiser TS, Ohnmacht GA, Guo ZS, Fischette MR, Chen GA, Hong JA, Nguyen DM, Schrump DS (2001) Induction of MAGE-3 expression in lung and esophageal cancer cells. Ann Thorac Surg 71:295–301 discussion-2

    Article  PubMed  CAS  Google Scholar 

  9. Momparler RL (1985) Molecular, cellular and animal pharmacology of 5-aza-2′-deoxycytidine. Pharmacol Ther 30:287–299

    Article  PubMed  CAS  Google Scholar 

  10. Yoo CB, Jeong S, Egger G, Liang G, Phiasivongsa P, Tang C, Redkar S, Jones PA (2007) Delivery of 5-aza-2′-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 67:6400–6408. doi:10.1158/0008-5472.CAN-07-0251

    Article  PubMed  CAS  Google Scholar 

  11. Issa JP, Roboz G, Rizzieri D, Faderl S, O’Connell C, Stock W, Tibes R, Griffiths E, Yee K, Chung W, Choy G, Oganesian A, Taverna P, Azab M, Kantarjian H (2012) Abstract LB-214: Interim results from a randomized Phase 1-2 first-in-human (FIH) study of PK/PD guided escalating doses of SGI-110, a novel subcutaneous (SQ) second generation hypomethylating agent (HMA) in relapsed/refractory MDS and AML. Cancer Res 72

  12. Chuang JC, Warner SL, Vollmer D, Vankayalapati H, Redkar S, Bearss DJ, Qiu X, Yoo CB, Jones PA (2010) S110, a 5-Aza-2′-deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 9:1443–1450. doi:10.1158/1535-7163.MCT-09-1048

    Article  PubMed  CAS  Google Scholar 

  13. Altomonte M, Gloghini A, Bertola G, Gasparollo A, Carbone A, Ferrone S, Maio M (1993) Differential expression of cell adhesion molecules CD54/CD11a and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells. Cancer Res 53:3343–3348

    PubMed  CAS  Google Scholar 

  14. Coral S, Sigalotti L, Altomonte M et al (2002) 5-aza-2′-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin Cancer Res 8:2690–2695

    PubMed  CAS  Google Scholar 

  15. Mutti L, Valle MT, Balbi B, Orengo AM, Lazzaro A, Alciato P, Gatti E, Betta PG, Pozzi E (1998) Primary human mesothelioma cells express class II MHC, ICAM-1 and B7–2 and can present recall antigens to autologous blood lymphocytes. Int J Cancer 78:740–749. doi:10.1002/(SICI)1097-0215(19981209)78:6<740:AID-IJC12>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  16. Calabro L, Fonsatti E, Altomonte M, Pezzani L, Colizzi F, Nanni P, Gattei V, Sigalotti L, Maio M (2005) Methylation-regulated expression of cancer testis antigens in primary effusion lymphoma: immunotherapeutic implications. J Cell Physiol 202:474–477. doi:10.1002/jcp.20133

    Article  PubMed  CAS  Google Scholar 

  17. Coral S, Sigalotti L, Gasparollo A, Cattarossi I, Visintin A, Cattelan A, Altomonte M, Maio M (1999) Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2′-deoxycytidine (5-AZA-CdR). J Immunother 22:16–24

    Article  PubMed  CAS  Google Scholar 

  18. Ausubel FM, Brent R, Kingston RE et al (1998) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  19. Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  PubMed  CAS  Google Scholar 

  20. Caballero OL, Chen YT (2009) Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 100:2014–2021. doi:10.1111/j.1349-7006.2009.01303.x

    Article  PubMed  CAS  Google Scholar 

  21. Aptsiauri N, Cabrera T, Garcia-Lora A, Lopez-Nevot MA, Ruiz-Cabello F, Garrido F (2007) MHC class I antigens and immune surveillance in transformed cells. Int Rev Cytol 256:139–189. doi:10.1016/S0074-7696(07)56005-5

    Article  PubMed  CAS  Google Scholar 

  22. Weidanz JA, Nguyen T, Woodburn T, Neethling FA, Chiriva-Internati M, Hildebrand WH, Lustgarten J (2006) Levels of specific peptide-HLA class I complex predicts tumor cell susceptibility to CTL killing. J Immunol 177:5088–5097

    PubMed  CAS  Google Scholar 

  23. Lebedeva T, Dustin ML, Sykulev Y (2005) ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr Opin Immunol 17:251–258. doi:10.1016/j.coi.2005.04.008

    Article  PubMed  CAS  Google Scholar 

  24. Coral S, Covre A, Jmg Nicolay H et al (2012) Epigenetic remodelling of gene expression profiles of neoplastic and normal tissues: immunotherapeutic implications. Br J Cancer. doi:10.1038/bjc.2012.361

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grants from Associazione Italiana per la Ricerca sul Cancro (IG 11746 to MM and MFAG 9195 to LS), Fondazione Monte dei Paschi di Siena (SC), Harry J. Lloyd Charitable Trust (MM), Istituto Superiore di Sanità (MM), Istituto Toscano Tumori (MM), and Regione Toscana “Regional Health Research Program 2009″ (MM).

Conflict of interest

The authors declare no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Maio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coral, S., Parisi, G., Nicolay, H.J.M.G. et al. Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide. Cancer Immunol Immunother 62, 605–614 (2013). https://doi.org/10.1007/s00262-012-1365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1365-7

Keywords

Navigation