Skip to main content

Advertisement

Log in

Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cancer vaccines have been developed to instruct the endogenous immune responses to autologous tumors and to generate durable clinical responses. However, the therapeutic benefits of cancer vaccines remain insufficient due to the multiple immunosuppressive signals delivered by tumors. Thus, to improve the clinical efficacy of cancer immunotherapy, it is important to develop new modalities to overcome immunosuppressive tumor microenvironments and elicit effective antitumor immune responses. In this study, we show that novel monoclonal antibodies (mAbs) specifically targeting either T cell immunoglobulin mucin protein-3 (TIM-3) or T cell immunoglobulin mucin protein-4 (TIM-4) enhance the therapeutic effects of vaccination against established B16 murine melanomas. This is true for vaccination with irradiated B16 melanoma cells engineered to express the flt3 ligand gene (FVAX). More importantly, combining anti-TIM-3 and anti-TIM-4 mAbs markedly increased vaccine-induced antitumor responses against established B16 melanoma. TIM-3 blockade mainly stimulated antitumor effector activities via natural killer cell-dependent mechanisms, while CD8+ T cells served as the main effectors induced by anti-TIM-4 mAb. Our findings reveal that therapeutic manipulation of TIM-3 and TIM-4 may provide a novel strategy for improving the clinical efficacy of cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117

    Article  PubMed  CAS  Google Scholar 

  2. Andrews DM, Maraskovsky E, Smyth MJ (2008) Cancer vaccines for established cancer: how to make them better? Immunol Rev 222:242–255

    Article  PubMed  CAS  Google Scholar 

  3. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    Article  PubMed  CAS  Google Scholar 

  4. Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81

    Article  PubMed  CAS  Google Scholar 

  5. Peggs KS, Segal NH, Allison JP (2007) Targeting immunosupportive cancer therapies: accentuate the positive, eliminate the negative. Cancer Cell 12:192–199

    Article  PubMed  CAS  Google Scholar 

  6. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  PubMed  CAS  Google Scholar 

  7. Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165

    Article  PubMed  CAS  Google Scholar 

  8. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    Article  PubMed  CAS  Google Scholar 

  9. Woo S-R, Turnis ME, Goldberg MV et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72:917–927

    Article  PubMed  CAS  Google Scholar 

  10. Fourcade J, Sun Z, Pagliano O et al (2012) CD8+ T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 72:887–896

    Article  PubMed  CAS  Google Scholar 

  11. Fourcade J, Sun Z, Benallaoua M et al (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207:2175–2186

    Article  PubMed  CAS  Google Scholar 

  12. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2012) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194

    Article  Google Scholar 

  13. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  PubMed  CAS  Google Scholar 

  14. Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  PubMed  CAS  Google Scholar 

  15. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–5244

    Article  PubMed  CAS  Google Scholar 

  16. Ngiow SF, Teng MW, Smyth MJ (2011) Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res 71:6567–6571

    Article  PubMed  CAS  Google Scholar 

  17. Anderson AC (2012) Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol 24:213–216

    Article  PubMed  CAS  Google Scholar 

  18. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439

    Article  PubMed  CAS  Google Scholar 

  19. Kobayashi N, Karisola P, Peña-Cruz V et al (2007) TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27:927–940

    Article  PubMed  CAS  Google Scholar 

  20. Rodriguez-Manzanet R, Sanjuan MA, Wu HY et al (2010) T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proc Natl Acad Sci USA 107:8706–8711

    Article  PubMed  CAS  Google Scholar 

  21. Jinushi M, Sato M, Kanamoto A et al (2009) Milk fat globule epidermal growth factor-8 blockade triggers tumor destruction through coordinated cell-autonomous and immune-mediated mechanisms. J Exp Med 206:1317–1326

    Article  PubMed  CAS  Google Scholar 

  22. Curran MA, Allison JP (2009) Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res 69:7747–7755

    Article  PubMed  CAS  Google Scholar 

  23. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280

    Article  PubMed  CAS  Google Scholar 

  24. Nakayama M, Akiba H, Takeda K et al (2009) Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113:3821–3830

    Article  PubMed  CAS  Google Scholar 

  25. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861

    Article  PubMed  CAS  Google Scholar 

  26. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  PubMed  CAS  Google Scholar 

  27. Ngiow SF, von Scheidt B, Akiba H, Yagita H, Teng MWL, Smyth MJ (2011) Anti-TIM3 antibody promotes T cell IFN-γ-mediated antitumor immunity and suppresses established tumors. Cancer Res 71:3540–3551

    Article  PubMed  CAS  Google Scholar 

  28. Chiba S, Baghdadi M, Akiba H et al (2012) Tumor-infiltrating dendritic cells suppress nucleic acids-mediated innate immune response through TIM-3-HMGB1 interactions. Nat Immunol 13:832–842

    Article  PubMed  CAS  Google Scholar 

  29. Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  PubMed  CAS  Google Scholar 

  30. Shiao SL, Ganesan AP, Rugo HS, Coussens LM (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25:2272–2559

    Article  Google Scholar 

  31. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    Article  PubMed  CAS  Google Scholar 

  32. Jinushi M (2012) The role of innate immune signals in antitumor immunity. Oncoimmunology 1:189–194

    Article  PubMed  Google Scholar 

  33. Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9:353–363

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor James P. Allison and Dr. Michael A. Curran (Memorial Sloan-Kettering Cancer Center) for the B16-Flt3L cell line, Dr. Heiichiro Udono (Okayama University) for the B16-OVA cell line, Dr. Jedd Wolchok (Memorial Sloan-Kettering Cancer Center) for DNA plasmids and Dr. Shigeo Koyasu (Keio University) for the OT-I mice. In addition, we wish to extend appreciation to Mr. Tsunaki Yamashina for assistance with animal care. This study is partially supported by a Grant-in-Aid for Scientific Research and Scientific Research for Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Takeda Science Foundation, the Sumitomo Foundation and Terumo Life Science Foundation (M. J.); Grant-in-Aid from MEXT and the National Cancer Center Research and Development Fund (H.Ya.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahisa Jinushi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baghdadi, M., Nagao, H., Yoshiyama, H. et al. Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas. Cancer Immunol Immunother 62, 629–637 (2013). https://doi.org/10.1007/s00262-012-1371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1371-9

Keywords

Navigation