Skip to main content

Advertisement

Log in

Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The genetic modification of CD8+ T cells using anti-tumor T-cell receptors (TCR) or chimeric antigen receptors is a promising approach for the adoptive cell therapy of patients with cancer. We previously developed a simplified method for the clinical-scale generation of central memory-like (Tcm) CD8+ T cells following transduction with lentivirus encoding anti-tumor TCR and culture in the presence of IL-2. In this study, we compared different cytokines or combinations of IL-2, IL-7, IL-12, IL-15, and IL-21 to expand genetically engineered CD8+ T cells. We demonstrated that specific cytokine combinations IL-12 plus IL-7 or IL-21 for 3 days followed by withdrawal of IL-12 yielded the phenotype of CD62LhighCD28high CD127highCD27highCCR7high, which is associated with less-differentiated T cells. Genes associated with stem cells (SOX2, NANOG, OCT4, and LIN28A), were also up-regulated by this cytokine cocktail. Moreover, the use of IL-12 plus IL-7 or IL-21 yielded CD8 T cells showing enhanced persistence in the NOD/SCID/γc−/− mouse model. This defined cytokine combination could also alter highly differentiated TIL from melanoma patients into cells with a less-differentiated phenotype. The methodology that we developed for generating a less-differentiated anti-tumor CD8+ T cells ex vivo may be ideal for the adoptive immunotherapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dudley ME, Yang JC, Sherry R et al (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239

    Article  PubMed  CAS  Google Scholar 

  2. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118:294–305

    Article  PubMed  CAS  Google Scholar 

  3. Gattinoni L, Klebanoff CA, Palmer DC et al (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115:1616–1626

    Article  PubMed  CAS  Google Scholar 

  4. Bouneaud C, Garcia Z, Kourilsky P, Pannetier C (2005) Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo. J Exp Med 201:579–590

    Article  PubMed  CAS  Google Scholar 

  5. Rosenberg SA, Yang JC, Sherry RM et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T Cell transfer immunotherapy. Clin Cancer Res 17:4550–4557

    Article  PubMed  CAS  Google Scholar 

  6. Dudley ME, Wunderlich JR, Yang JC et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    Article  PubMed  CAS  Google Scholar 

  7. Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  PubMed  CAS  Google Scholar 

  8. Johnson LA, Morgan RA, Dudley ME et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  PubMed  CAS  Google Scholar 

  9. Robbins PF, Morgan RA, Feldman SA et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924

    Article  PubMed  Google Scholar 

  10. Yang S, Dudley ME, Rosenberg SA, Morgan RA (2010) A simplified method for the clinical-scale generation of central memory-like CD8+ T cells after transduction with lentiviral vectors encoding antitumor antigen T-cell receptors. J Immunother 33:648–658

    Article  PubMed  CAS  Google Scholar 

  11. Gattinoni L, Klebanoff CA, Restifo NP (2009) Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci Transl Med 1:11

    Article  Google Scholar 

  12. Gattinoni L, Zhong XS, Palmer DC et al (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15:808–813

    Article  PubMed  CAS  Google Scholar 

  13. Hinrichs CS, Spolski R, Paulos CM et al (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111:5326–5333

    Article  PubMed  CAS  Google Scholar 

  14. Klebanoff CA, Finkelstein SE, Surman DR et al (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 101:1969–1974

    Article  PubMed  CAS  Google Scholar 

  15. Decaluwe H, Taillardet M, Corcuff E, Munitic I, Law HK, Rocha B, Riviere Y, Di Santo JP (2010) Gamma(c) deficiency precludes CD8+ T cell memory despite formation of potent T cell effectors. Proc Natl Acad Sci USA 107:9311–9316

    Article  PubMed  CAS  Google Scholar 

  16. Turtle CJ, Swanson HM, Fujii N, Estey EH, Riddell SR (2009) A distinct subset of self-renewing human memory CD8 + T cells survives cytotoxic chemotherapy. Immunity 31:834–844

    Article  PubMed  CAS  Google Scholar 

  17. Kaka AS, Shaffer DR, Hartmaier R, Leen AM, Lu A, Bear A, Rooney CM, Foster AE (2009) Genetic modification of T cells with IL-21 enhances antigen presentation and generation of central memory tumor-specific cytotoxic T-lymphocytes. J Immunother 32:726–736

    Article  PubMed  CAS  Google Scholar 

  18. Cha E, Graham L, Manjili MH, Bear HD (2010) IL-7+IL-15 are superior to IL-2 for the ex vivo expansion of 4T1 mammary carcinoma-specific T cells with greater efficacy against tumors in vivo. Breast Cancer Res Treat 122:359–369

    Article  PubMed  CAS  Google Scholar 

  19. Markley JC, Sadelain M (2010) IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood 115:3508–3519

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Bleakley M, Yee C (2005) IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 175:2261–2269

    PubMed  CAS  Google Scholar 

  21. Albrecht J, Frey M, Teschner D, Carbol A, Theobald M, Herr W, Distler E (2011) IL-21-treated naive CD45RA+CD8+ T cells represent a reliable source for producing leukemia-reactive cytotoxic T lymphocytes with high proliferative potential and early differentiation phenotype. Cancer Immunol Immunother 60:235–248

    Article  PubMed  CAS  Google Scholar 

  22. Alves NL, Arosa FA, van Lier RA (2005) IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells. J Immunol 175:755–762

    PubMed  CAS  Google Scholar 

  23. Lee JB, Lee KA, Chang J (2007) Phenotypic changes induced by IL-12 priming regulate effector and memory CD8 T cell differentiation. Int Immunol 19:1039–1048

    Article  PubMed  CAS  Google Scholar 

  24. van Wely CA, Beverley PC, Brett SJ, Britten CJ, Tite JP (1999) Expression of L-selectin on Th1 cells is regulated by IL-12. J Immunol 163:1214–1221

    PubMed  Google Scholar 

  25. Ye Z, Xu S, Moyana T, Yang J, Xiang J (2008) Defect of CD8+ memory T cells developed in absence of IL-12 priming for secondary expansion. Cell Mol Immunol 5:147–152

    Article  PubMed  CAS  Google Scholar 

  26. Diaz-Montero CM, El Naggar S, Al Khami A, El Naggar R, Montero AJ, Cole DJ, Salem ML (2008) Priming of naive CD8+ T cells in the presence of IL-12 selectively enhances the survival of CD8+ CD62Lhi cells and results in superior anti-tumor activity in a tolerogenic murine model. Cancer Immunol Immunother 57:563–572

    Article  PubMed  CAS  Google Scholar 

  27. Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP, Rosenberg SA, Morgan RA (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 19:751–759

    Article  PubMed  CAS  Google Scholar 

  28. Kerkar SP, Muranski P, Kaiser A et al (2010) Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res 70:6725–6734

    Article  PubMed  CAS  Google Scholar 

  29. Riddell SR, Greenberg PD (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 128:189–201

    Article  PubMed  CAS  Google Scholar 

  30. Jones S, Peng PD, Yang S et al (2009) Lentiviral vector design for optimal T cell receptor gene expression in the transduction of peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Hum Gene Ther 20:630–640

    Article  PubMed  CAS  Google Scholar 

  31. Johnson LA, Heemskerk B, Powell DJ Jr, Cohen CJ, Morgan RA, Dudley ME, Robbins PF, Rosenberg SA (2006) Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes. J Immunol 177:6548–6559

    PubMed  CAS  Google Scholar 

  32. Yang S, Cohen CJ, Peng PD et al (2008) Development of optimal bicistronic lentiviral vectors facilitates high-level TCR gene expression and robust tumor cell recognition. Gene Ther 15:1411–1423

    Article  PubMed  CAS  Google Scholar 

  33. Yang S, Rosenberg SA, Morgan RA (2008) Clinical-scale lentiviral vector transduction of PBL for TCR gene therapy and potential for expression in less-differentiated cells. J Immunother 31:830–839

    Article  PubMed  CAS  Google Scholar 

  34. Gattinoni L, Lugli E, Ji Y et al (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17:1290–1297

    Article  PubMed  CAS  Google Scholar 

  35. Yang S, Gattinoni L, Liu F, Ji Y, Yu Z, Restifo NP, Rosenberg SA, Morgan RA (2011) In vitro generated anti-tumor T lymphocytes exhibit distinct subsets mimicking in vivo antigen-experienced cells. Cancer Immunol Immunother 60:739–749

    Article  PubMed  CAS  Google Scholar 

  36. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  PubMed  CAS  Google Scholar 

  37. Kochenderfer JN, Wilson WH, Janik JE et al (2010) Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116:4099–4102

    Article  PubMed  CAS  Google Scholar 

  38. Yang S, Dudley ME, Rosenberg SA, Morgan RA (2010) A simplified method for the clinical-scale generation of central memory-like CD8+ T cells after transduction with lentiviral vectors encoding antitumor antigen T-cell receptors. J Immunother 33:648–658

    Article  PubMed  CAS  Google Scholar 

  39. Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27+CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–250

    Article  PubMed  CAS  Google Scholar 

  40. Brenchley JM, Karandikar NJ, Betts MR et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:2711–2720

    Article  PubMed  CAS  Google Scholar 

  41. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, Hock H, Hochedlinger K (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41:968–976

    Article  PubMed  CAS  Google Scholar 

  42. Loh YH, Hartung O, Li H et al (2010) Reprogramming of T cells from human peripheral blood. Cell Stem Cell 7:15–19

    Article  PubMed  Google Scholar 

  43. Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, Mostoslavsky G, Jaenisch R (2010) Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7:20–24

    Article  PubMed  CAS  Google Scholar 

  44. Gattinoni L, Klebanoff CA, Restifo NP (2012) Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer 12:671–684

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Arnold Mixon and Shawn Farid in the FACS laboratory and all members in the TIL laboratory at the Surgery Branch for providing technical support and maintenance of PBL and tumor cells from patients. This work is supported by the Intramural Research Program of the National Institute of Health, National Cancer Institute, Center for Cancer Research.

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Morgan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 3529 kb)

Supplementary material 2 (EPS 558 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Ji, Y., Gattinoni, L. et al. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol Immunother 62, 727–736 (2013). https://doi.org/10.1007/s00262-012-1378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1378-2

Keywords

Navigation