Skip to main content

Advertisement

Log in

Identification of HLA ligands and T-cell epitopes for immunotherapy of lung cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Introduction

Lung cancer is the most common cancer worldwide. Every year, as many people die of lung cancer as of breast, colon and rectum cancers combined. Because most patients are being diagnosed in advanced, not resectable stages and therefore have a poor prognosis, there is an urgent need for alternative therapies. Since it has been demonstrated that a high number of tumor- and stromal-infiltrating cytotoxic T cells (CTLs) is associated with an increased disease-specific survival in lung cancer patients, it can be assumed that immunotherapy, e.g. peptide vaccines that are able to induce a CTL response against the tumor, might be a promising approach.

Methods

We analyzed surgically resected lung cancer tissues with respect to HLA class I- and II-presented peptides and gene expression profiles, aiming at the identification of (novel) tumor antigens. In addition, we tested the ability of HLA ligands derived from such antigens to generate a CTL response in healthy donors.

Results

Among 170 HLA ligands characterized, we were able to identify several potential targets for specific CTL recognition and to generate CD8+ T cells which were specific for peptides derived from cyclin D1 or protein-kinase, DNA-activated, catalytic polypeptide and lysed tumor cells loaded with peptide.

Conclusions

This is the first molecular analysis of HLA class I and II ligands ex vivo from human lung cancer tissues which reveals known and novel tumor antigens able to elicit a CTL response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boyle P, Levin B (2008) World Cancer Report 2008. http://www.iarc.fr/en/publications/pdfs-online/wcr/2008/wcr_2008_1.pdf. Accessed 03 March 2013

  2. Passlick B, Pantel K, Kubuschok B, Angstwurm M, Neher A, Thetter O, Schweiberer L, Izbicki JR (1996) Expression of MHC molecules and ICAM-1 on non-small cell lung carcinomas: association with early lymphatic spread of tumour cells. Eur J Cancer 32A:141–145

    Article  PubMed  CAS  Google Scholar 

  3. Kikuchi E, Yamazaki K, Torigoe T, Cho Y, Miyamoto M, Oizumi S, Hommura F, Dosaka-Akita H, Nishimura M (2007) HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer. Cancer Sci 98:1424–1430

    Article  PubMed  CAS  Google Scholar 

  4. Verdegaal EM, Hoogstraten C, Sandel MH, Kuppen PJ, Brink AA, Claas FH, Gorsira MC, Graadt van Roggen JF, Osanto S (2007) Functional CD8 + T cells infiltrate into nonsmall cell lung carcinoma. Cancer Immunol Immunother 56:587–600

    Article  PubMed  CAS  Google Scholar 

  5. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14:5220–5227

    Article  PubMed  CAS  Google Scholar 

  6. Falk K, Rötzschke O, Stevanovic S, Jung G, Rammensee HG (1991) Allel-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296

    Article  PubMed  CAS  Google Scholar 

  7. Weinzierl AO, Maurer D, Altenberend F, Schneiderhan-Marra N, Klingel K, Schoor O et al (2008) A cryptic vascular endothelial growth factor T-cell epitope: identification and characterization by mass spectrometry and T-cell assays. Cancer Res 68:2447–2454

    Article  PubMed  CAS  Google Scholar 

  8. Weinzierl AO, Lemmel C, Schoor O, Müller M, Krüger T, Wernet D et al (2007) Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol Cell Proteomics 6:102–113

    PubMed  CAS  Google Scholar 

  9. Krüger T, Schoor O, Lemmel C, Kraemer B, Reichle C, Dengjel J et al (2005) Lessons to be learned from primary renal cell carcinomas: novel tumor antigens and HLA ligands for immunotherapy. Cancer Immunol Immunother 54:826–836

    Article  PubMed  Google Scholar 

  10. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96

    Article  PubMed  CAS  Google Scholar 

  11. Brossart P, Stuhler G, Flad T, Stevanovic S, Rammensee HG, Kanz L, Brugger W (1998) Her-2/neu derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58:732–736

    PubMed  CAS  Google Scholar 

  12. Stickel JS, Stickel N, Hennenlotter J, Klingel K, Stenzl A, Rammensee HG, Stevanovic S (2011) Quantification of HLA class I molecules on renal cell carcinoma using Edman degradation. BMC Urol 11:1–11

    Article  PubMed  Google Scholar 

  13. Shetty V, Sinnathamby G, Nickens Z, Shah P, Hafner J, Mariello L et al (2011) MHC class I-presented lung cancer-associated tumor antigens identified by immunoproteomics analysis are targets for cancer-specific T cell response. J Proteomics 74:728–743

    Article  PubMed  CAS  Google Scholar 

  14. Abe H, Kamai T, Shirataki H, Oyama T, Arai K, Yoshida K (2008) High expression of Ran GTPase is associated with local invasion and metastasis of human clear cell renal cell carcinoma. Int J Cancer 122:2391–2397

    Article  PubMed  CAS  Google Scholar 

  15. Ueno T, Linder S, Elmberger G (2003) Aspartic proteinase napsin is a useful marker for diagnosis of primary lung adenocarcinoma. Br J Cancer 88:1229–1233

    Article  PubMed  CAS  Google Scholar 

  16. Gsur A, Zidek T, Schnattinger K, Feik E, Haidinger G, Hollaus P et al (2003) Association of microsomal epoxide hydrolase polymorphisms and lung cancer risk. Br J Cancer 89:702–706

    Article  PubMed  CAS  Google Scholar 

  17. Hiruma Y, Honjo T, Jelinek DF, Windle JJ, Shin J, Roodman GD, Kurihara N (2009) Increased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation. Blood 113:4894–4902

    Article  PubMed  CAS  Google Scholar 

  18. Volm M, Koomägi R (2000) Relevance of proliferative and pro-apoptotic factors in non-small-cell lung cancer for patient survival. Br J Cancer 82:1747–1754

    Article  PubMed  CAS  Google Scholar 

  19. Yu Q, Geng Y, Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411:1017–1021

    Article  PubMed  CAS  Google Scholar 

  20. LeibundGut-Landmann S, Waldburger JM, Krawczyk M, Otten LA, Suter T, Fontana A, Acha-Orbea H, Reith W (2004) Mini-review: specificity and expression of CIITA, the master regulator of MHC class II genes. Eur J Immunol 34:1513–1525

    Article  PubMed  CAS  Google Scholar 

  21. Dengjel J, Nastke MD, Gouttefangeas C, Gitsioudis G, Schoor O, Altenberend F et al (2006) Unexpected abundance of HLA class II presented peptides in primary renal cell carcinomas. Clin Cancer Res 12:4163–4170

    Article  PubMed  CAS  Google Scholar 

  22. Ouellet V, Guyot MC, Le Page C, Filali-Mouhim A, Lussier C, Tonin PN, Provencher DM, Mes-Masson AM (2006) Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer. Int J Cancer 119:599–607

    Article  PubMed  CAS  Google Scholar 

  23. Azuma K, Sasada T, Takedatsu H, Shomura H, Koga M, Maeda Y et al (2004) Ran, a small GTPase gene, encodes cytotoxic T lymphocyte (CTL) epitopes capable of inducing HLA-A33-restricted and tumor-reactive CTLs in cancer patients. Clin Cancer Res 10:6695–6702

    Article  PubMed  CAS  Google Scholar 

  24. Bishop JA, Sharma R, Illei PB (2010) Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol 41:20–25

    Article  PubMed  CAS  Google Scholar 

  25. Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8:945–954

    PubMed  CAS  Google Scholar 

  26. Khodarev NN, Beckett M, Labay E, Darga T, Roizman B, Weichselbaum RR (2004) STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc Natl Acad Sci USA 101:1714–1719

    Article  PubMed  CAS  Google Scholar 

  27. Hui Z, Tretiakova M, Zhang Z, Li Y, Wang X, Zhu JX et al (2009) Radiosensitization by inhibiting STAT1 in renal cell carcinoma. Int J Radiat Oncol Biol Phys 73:288–295

    Article  PubMed  CAS  Google Scholar 

  28. Terry G, Ho L, Londesborough P, Duggan C, Hanby A, Cuzick J (2007) The expression of FHIT, PCNA and EGFR in benign and malignant breast lesions. Br J Cancer 96:110–117

    Article  PubMed  CAS  Google Scholar 

  29. Gautschi O, Ratschiller D, Gugger M, Betticher DC, Heighway J (2007) Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer 55:1–14

    Article  PubMed  Google Scholar 

  30. Keum JS, Kong G, Yang SC, Shin DH, Park SS, Lee JH, Lee JD (1999) Cyclin D1 overexpression is an indicator of poor prognosis in resectable non-small cell lung cancer. Br J Cancer 81:127–132

    Article  PubMed  CAS  Google Scholar 

  31. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed  CAS  Google Scholar 

  32. Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics 21:4205–4208. GEO accession GDS 1312

    Google Scholar 

  33. Gordon GJ, Rockwell GN, Jensen RV, Rheinwald JG, Glickman JN, Aronson JP et al (2005) Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am J Pathol 166:1827–1840. GEO accession GDS 1220

    Google Scholar 

  34. Raponi M, Zhang Y, Yu J, Chen G, Lee G, Taylor JM et al (2006) Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res 66:7466–7472. GEO accession GDS 2373

    Google Scholar 

  35. Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn PA Jr et al (2005) Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol 167:1763–1775. GEO accession GDS 1650

    Google Scholar 

  36. Beskow C, Skikuniene J, Holgersson A, Nilsson B, Lewensohn R, Kanter L, Viktorsson K (2009) Radioresistant cervical cancer shows upregulation of the NHEJ proteins DNA-PKcs, Ku70 and Ku86. Br J Cancer 101:816–821

    Article  PubMed  CAS  Google Scholar 

  37. Chen HL, Gabrilovich D, Tampé R, Girgis KR, Nadaf S, Carbone DP (1996) A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat Genet 13:210–213

    Article  PubMed  CAS  Google Scholar 

  38. Ewen ME, Lamb J (2004) The activities of cyclin D1 that drive tumorigenesis. Trends Mol Med 10:158–162

    Article  PubMed  CAS  Google Scholar 

  39. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006) Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25:1620–1628

    Article  PubMed  CAS  Google Scholar 

  40. Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, Barnes D, Peters G (1994) Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54:1812–1817

    PubMed  CAS  Google Scholar 

  41. Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS et al (2003) A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114:323–334

    Article  PubMed  CAS  Google Scholar 

  42. Bosch F, Jares P, Campo E, Lopez-Guillermo A, Piris MA, Villamor N et al (1994) PRAD-1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood 84:2726–2732

    PubMed  CAS  Google Scholar 

  43. Lonardo F, Rusch V, Langenfeld J, Dmitrovsky E, Klimstra DS (1999) Overexpression of cyclins D1 and E is frequent in bronchial preneoplasia and precedes squamous cell carcinoma development. Cancer Res 59:2470–2476

    PubMed  CAS  Google Scholar 

  44. Wang M, Sun L, Qian J, Han X, Zhang L, Lin P, Cai Z, Yi Q (2009) Cyclin D1 as a universally expressed mantle cell lymphoma-associated tumor antigen for immunotherapy. Leukemia 23:1320–1328

    Article  PubMed  CAS  Google Scholar 

  45. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 100:12871–12876

    Article  PubMed  CAS  Google Scholar 

  46. Smith GC, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13:916–934

    Article  PubMed  CAS  Google Scholar 

  47. Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178

    Article  PubMed  CAS  Google Scholar 

  48. Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4:712–720

    Article  PubMed  CAS  Google Scholar 

  49. Zhao HJ, Hosoi Y, Miyachi H, Ishii K, Yoshida M, Nemoto K et al (2000) DNA-dependent protein kinase activity correlates with Ku70 expression and radiation sensitivity in esophageal cancer cell lines. Clin Cancer Res 6:1073–1078

    PubMed  CAS  Google Scholar 

  50. Xing J, Wu X, Vaporciyan AA, Spitz MR, Gu J (2008) Prognostic significance of ataxia-telangiectasia mutated, DNA-dependent protein kinase catalytic subunit, and Ku heterodimeric regulatory complex 86-kD subunit expression in patients with nonsmall cell lung cancer. Cancer 112:2756–2764

    Article  PubMed  CAS  Google Scholar 

  51. Sirzén F, Nilsson A, Zhivotovsky B, Lewensohn R (1999) DNA-dependent protein kinase content and activity in lung carcinoma cell lines: correlation with intrinsic radiosensitivity. Eur J Cancer 35:111–116

    Article  PubMed  Google Scholar 

  52. Rammensee HG, Weinschenk T, Gouttefangeas C, Stevanovic S (2002) Towards patient-specific tumor antigen selection for vaccination. Immunol Rev 188:164–176

    Article  PubMed  CAS  Google Scholar 

  53. Aptisauri N, Cabrera T, Mendez R, Garcia-Lora A, Ruiz-Cabello F, Garrido F (2007) Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol 601:123–131

    Article  Google Scholar 

  54. Méndez R, Rodríguez T, Del Campo A, Monge E, Maleno I, Aptsiauri N et al (2008) Characterization of HLA class I altered phenotypes in a panel of human melanoma cell lines. Cancer Immunol Immunother 57:719–729

    Article  PubMed  Google Scholar 

  55. Seliger B, Maeurer MJ, Ferrone S (2000) Antigen-processing machinery breakdown and tumor growth. Immunol Today 21:455–464

    Article  PubMed  CAS  Google Scholar 

  56. Seliger B, Höhne A, Knuth A, Bernhard H, Ehring B, Tampé R, Huber C (1996) Reduced membrane major histocompatibility complex class I density and stability in a subset of human renal cell carcinomas with low TAP and LMP expression. Clin Cancer Res 8:1427–1433

    Google Scholar 

  57. Fruci D, Ferracuti S, Limongi MZ, Cunsolo V, Giorda E, Fraioli R et al (2006) Expression of endoplasmic reticulum aminopeptidases in EBV-B cell lines from healthy donors and in leukemia/lymphoma, carcinoma, and melanoma cell lines. J Immunol 176:4869–4879

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Martina Sauter for performing the immunohistochemical stainings. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, SFB 685 and GK 794) and the European Union (Cancer Immunotherapy, LSHC-CT-2006, 518234).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Stevanović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 454 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, A., Hörzer, H., Hillen, N. et al. Identification of HLA ligands and T-cell epitopes for immunotherapy of lung cancer. Cancer Immunol Immunother 62, 1485–1497 (2013). https://doi.org/10.1007/s00262-013-1454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1454-2

Keywords

Navigation