Skip to main content

Advertisement

Log in

PD-1+ immune cell infiltration inversely correlates with survival of operable breast cancer patients

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The programmed death-1 (PD-1) molecule is mainly expressed on functionally “exhausted” CD8+ T cells, dampening the host antitumor immune response. We evaluated the ratio between effective and regulatory T cells (Tregs) and PD-1 expression as a prognostic factor for operable breast cancer patients. A series of 218 newly diagnosed invasive breast cancer patients who had undergone primary surgery at Ruijin Hospital were identified. The influence of CD8+ cytotoxic T lymphocytes, FOXP3+ (Treg cell marker), and PD-1+ immune cell counts on prognosis was analyzed utilizing immunohistochemistry. Both PD-1+ immune cells and FOXP3+ Tregs counts were significantly associated with unfavorable prognostic factors. In bivariate, but not multivariate analysis, high tumor infiltrating PD-1+ cell counts correlated with significantly shorter patient survival. Our results suggest a prognostic value of the PD-1+ immune cell population in such breast cancer patients. Targeting the PD-1 pathway may be a feasible approach to treating patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PD-1:

Programmed death-1

Treg:

Regulatory T cell

CTL:

Cytotoxic T lymphocyte

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

DFS:

Disease-free survival

BCSS:

Breast cancer-specific survival

TIL:

Tumor-infiltrating lymphocyte

PD-L1:

Programmed death-ligand 1

IHC:

Immunohistochemical

FFPE:

Formalin-fixed paraffin-embedded

H&E:

Hematoxylin and eosin

HPF:

High-powered field

SD:

Standard deviation

IDC:

Invasive ductal carcinoma

ILC:

Invasive lobular carcinoma

SE:

Standard error

ER:

Estrogen receptor

PR:

Progesterone receptor

HER2:

Human epidermal growth factor receptor-2

TNBC:

Triple-negative breast cancer

CAF:

Cancer-associated fibroblast

SOCS1:

Suppressor of cytokine signaling 1

RCC:

Renal cell carcinoma

HR:

Hazard ratio

CI:

Confidence interval

MDSC:

Myeloid-derived suppressor cell

TAM:

Tumor-associated macrophage

ORR:

Overall response rate

References

  1. Caras I, Grigorescu A, Stavaru C, Radu D, Mogos I, Szegli G, Salageanu A (2004) Evidence for immune defects in breast and lung cancer patients. Cancer Immunol Immunother 53:1146–1152

    Article  CAS  PubMed  Google Scholar 

  2. Andre F, Dieci MV, Dubsky P, Sotiriou C, Curigliano G, Denkert C, Loi S (2013) Molecular pathways: involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin Cancer Res 19:28–33

    Article  CAS  PubMed  Google Scholar 

  3. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29:1949–1955

    Article  PubMed  Google Scholar 

  4. Liu F, Lang R, Zhao J, Zhang X, Pringle GA, Fan Y, Yin D, Gu F, Yao Z, Fu L (2011) CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 130:645–655

    Article  CAS  PubMed  Google Scholar 

  5. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    Article  CAS  PubMed  Google Scholar 

  6. Mahmoud S, Lee A, Ellis I, Green A (2012) CD8+ T lymphocytes infiltrating breast cancer: a promising new prognostic marker? Oncoimmunology 1:364–365

    Article  PubMed Central  PubMed  Google Scholar 

  7. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  8. Topalian SL, Weiner GJ, Pardoll DM (2011) Cancer immunotherapy comes of age. J Clin Oncol 29:4828–4836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. deLeeuw RJ, Kost SE, Kakal JA, Nelson BH (2012) The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res 18:3022–3029

    Article  CAS  PubMed  Google Scholar 

  10. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  Google Scholar 

  11. Zitvogel L, Kroemer G (2012) Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology 1:1223–1225

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  13. Monaghan SF, Thakkar RK, Tran ML, Huang X, Cioffi WG, Ayala A, Heffernan DS (2012) Programmed death 1 expression as a marker for immune and physiological dysfunction in the critically ill surgical patient. Shock 38:117–122

    Article  CAS  PubMed  Google Scholar 

  14. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Flemming A (2012) Cancer: PD1 makes waves in anticancer immunotherapy. Nat Rev Drug Discov 11:601

    Article  CAS  PubMed  Google Scholar 

  17. Janakiram M, Abadi YM, Sparano JA, Zang X (2012) T cell coinhibition and immunotherapy in human breast cancer. Discov Med 14(77):229–236

    PubMed  Google Scholar 

  18. Ribas A (2012) Tumor immunotherapy directed at PD-1. N Engl J Med 366:2517–2519

    Article  CAS  PubMed  Google Scholar 

  19. Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermime S (2008) FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer 8:57

    Article  PubMed Central  PubMed  Google Scholar 

  20. Thompson RH, Dong H, Lohse CM, Leibovich BC, Blute ML, Cheville JC, Kwon ED (2007) PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 13:1757–1761

    Article  CAS  PubMed  Google Scholar 

  21. Hensel JA, Flaig TW, Theodorescu D (2012) Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol 10:41–51

    Article  PubMed  Google Scholar 

  22. Elston C, Ellis I (2002) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 41(3A):154–161

    Article  CAS  PubMed  Google Scholar 

  23. Black M, Speer F, Opler S (1956) Structural representations of tumor-host relationships in mammary carcinoma; biologic and prognostic significance. Am J Clin Pathol 26:250

    CAS  PubMed  Google Scholar 

  24. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  25. Stewart TJ, Smyth MJ (2011) Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 30:125–140

    Article  CAS  PubMed  Google Scholar 

  26. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  PubMed  Google Scholar 

  27. Ghebeh H, Mohammed S, Al-Omair A, Qattan A, Lehe C, Al-Qudaihi G, Elkum N, Alshabanah M, Bin Amer S, Tulbah A, Ajarim D, Al-Tweigeri T, Dermime S (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8:190–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, Chen L (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127–137

    Article  Google Scholar 

  29. Rozali EN, Hato SV, Robinson BW, Lake RA, Lesterhuis WJ (2012) Programmed death ligand 2 in cancer-induced immune suppression. Clin Dev Immunol 2012:656340

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hasan A, Ghebeh H, Lehe C, Ahmad R, Dermime S (2011) Therapeutic targeting of B7-H1 in breast cancer. Expert Opin Ther Targets 15:1211–1225

    Article  CAS  PubMed  Google Scholar 

  31. Poschke I, De Boniface J, Mao Y, Kiessling R (2012) Tumor-induced changes in the phenotype of blood-derived and tumor-associated T cells of early stage breast cancer patients. Int J Cancer 131(7):1611–1620

    Article  CAS  PubMed  Google Scholar 

  32. Chen DS, Irving BA, Hodi FS (2012) Molecular pathways: next-generation immunotherapy—inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res 18:6580–6587

    Article  CAS  PubMed  Google Scholar 

  33. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY, Yang YP, Tien P, Wang FS (2011) PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer 128:887–896

    Article  CAS  PubMed  Google Scholar 

  36. Wang SF, Fouquet S, Chapon M, Salmon H, Regnier F, Labroquère K, Badoual C, Damotte D, Validire P, Maubec E, Delongchamps NB, Cazes A, Gibault L, Garcette M, Dieu-Nosjean MC, Zerbib M, Avril MF, Prévost-Blondel A, Randriamampita C, Trautmann A, Bercovici N (2011) Early T cell signalling is reversibly altered in PD-1+ T lymphocytes infiltrating human tumors. PLoS One 6:e17621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY (2007) Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 25:2586–2593

    Article  PubMed  Google Scholar 

  38. Muenst S, Soysal S, Gao F, Obermann E, Oertli D, Gillanders W (2013) The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 139:667–676

    Article  CAS  PubMed  Google Scholar 

  39. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Lee AH, Ellis IO, Green AR (2011) An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat 127:99–108

    Article  CAS  PubMed  Google Scholar 

  41. Topfer K, Kempe S, Muller N, Schmitz M, Bachmann M, Cartellieri M, Schackert G, Temme A (2011) Tumor evasion from T cell surveillance. J Biomed Biotechnol 2011:918471

    Article  PubMed Central  PubMed  Google Scholar 

  42. Heys SD, Stewart KN, McKenzie EJ, Miller ID, Wong SY, Sellar G, Rees AJ (2012) Characterisation of tumour-infiltrating macrophages: impact on response and survival in patients receiving primary chemotherapy for breast cancer. Breast Cancer Res Treat 135:539–548

    Article  CAS  PubMed  Google Scholar 

  43. Pardoll D, Drake C (2012) Immunotherapy earns its spot in the ranks of cancer therapy. J Exp Med 209:201–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24:5373–5380

    Article  PubMed  Google Scholar 

  45. Liu H, Zhang T, Ye J, Li H, Huang J, Li X, Wu B, Huang X, Hou J (2012) Tumor-infiltrating lymphocytes predict response to chemotherapy in patients with advance non-small cell lung cancer. Cancer Immunol Immunother 61:1849–1856

    Article  CAS  PubMed  Google Scholar 

  46. West NR, Kost SE, Martin SD, Milne K, Deleeuw RJ, Nelson BH, Watson PH (2013) Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer 108:155–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Baker K, Lachapelle J, Zlobec I, Bismar TA, Terracciano L, Foulkes WD (2011) Prognostic significance of CD8+ T lymphocytes in breast cancer depends upon both oestrogen receptor status and histological grade. Histopathology 58:1107–1116

    PubMed  Google Scholar 

  48. Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO (2012) CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res 14:R48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Mohd Sharial MS, Crown J, Hennessy BT (2012) Overcoming resistance and restoring sensitivity to HER2-targeted therapies in breast cancer. Ann Oncol 23:3007–3016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, Rosenberg SA (2009) Tumor antigen—specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114:1537–1544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M, Sharpe AH, Vallera DA, Azuma M, Levine BL, June CH, Murphy WJ, Munn DH, Blazar BR (2010) Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 116:2484–2493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Peng DJ, Liu R, Zou W (2012) Regulatory T cells in human ovarian cancer. J Oncol 2012:345164

    Article  PubMed Central  PubMed  Google Scholar 

  53. Flemming A (2012) Cancer: PD1 makes waves in anticancer immunotherapy. Nat Rev Drug Discov 11:601–605

    Article  CAS  PubMed  Google Scholar 

  54. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research supported by grants from the National Natural Science Foundation of China (Grant Nos. 81202087; 81172520; 81202088), Leading Academic Discipline Project of Shanghai Municipal Education Commission (Grant No. J50208), and Foundation of Shanghai Science and Technology Commission (Grant No. 12140901503).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunwei Shen.

Additional information

Shenyou Sun and Xiaochun Fei have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1073 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Fei, X., Mao, Y. et al. PD-1+ immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother 63, 395–406 (2014). https://doi.org/10.1007/s00262-014-1519-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1519-x

Keywords

Navigation