Skip to main content

Advertisement

Log in

Monitoring the immune competence of cancer patients to predict outcome

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

A new era of cancer immunotherapy has brought not only successful cancer vaccines but also immunomodulators, such as those that target checkpoint blockade in order to induce endogenous host immune responses. However, the immune system of cancer patients can be compromised through multiple means, including immune suppression by the tumor and by prior therapies such as chemotherapy and radiation. Therefore, a comprehensive means of assessing patient immunocompetence would seem helpful for determining whether patients are ready to benefit from immunotherapy, and perhaps even which immunotherapy might be most appropriate for them. Unfortunately, there are no standardized tests for immune competence, nor is there agreement on what to measure and what will be predictive of outcome. In this review, we will discuss the technologies and assays that might be most useful for this purpose. We argue for a comprehensive approach that should maximize the chances of developing predictive biomarkers for eventual clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ehrlich P (1909) Uber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Gneneeskd 53:273–290

    Google Scholar 

  2. Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18:769–778

    CAS  PubMed  Google Scholar 

  3. Hewitt HB, Blake ER, Walder AS (1976) A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br J Cancer 33:241–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Van Pel A, Boon T (1982) Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci USA 79:4718–4722

    Article  PubMed Central  PubMed  Google Scholar 

  5. Vessiere F, Georlette M, Warnier G et al (1982) Immunogenic variants obtained by mutagenesis of mouse Lewis lung carcinoma. Recognition of variant-specific antigens by cytolytic T lymphocytes. Eur J Cancer Clin Oncol 18:867–874

    Article  CAS  PubMed  Google Scholar 

  6. Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P (2013) Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun 13:15

    PubMed Central  PubMed  Google Scholar 

  7. Lee PP, Yee C, Savage PA et al (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5:677–685. doi:10.1038/9525

    Article  CAS  PubMed  Google Scholar 

  8. Inokuma M, Rosa dela C, Schmitt C et al (2007) Functional T cell responses to tumor antigens in breast cancer patients have a distinct phenotype and cytokine signature. J Immunol 179:2627–2633

    Article  CAS  PubMed  Google Scholar 

  9. Rubio V, Stuge TB, Singh N et al (2003) Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 9:1377–1382. doi:10.1038/nm942

    Article  CAS  PubMed  Google Scholar 

  10. (2006) Cetuximab approved by FDA for treatment of head and neck squamous cell cancer. Cancer Biol Ther 5:340–342

  11. Reff ME, Carner K, Chambers KS et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445

    CAS  PubMed  Google Scholar 

  12. Rosenberg SA, Yang JC, Sherry RM et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17:4550–4557. doi:10.1158/1078-0432.CCR-11-0116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Dreier T, Baeuerle PA, Fichtner I et al (2003) T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J Immunol 170:4397–4402

    Article  CAS  PubMed  Google Scholar 

  14. Nagorsen D, Baeuerle PA (2011) Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res 317:1255–1260. doi:10.1016/j.yexcr.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  15. Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17:3520–3526. doi:10.1158/1078-0432.CCR-10-3126

    Article  PubMed  Google Scholar 

  16. Wolchok JD, Hodi FS, Weber JS et al (2013) Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann N Y Acad Sci 1291:1–13. doi:10.1111/nyas.12180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Staveley-O’Carroll K, Sotomayor E, Montgomery J et al (1998) Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci USA 95:1178–1183

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cosimi AB, Brunstetter FH, Kemmerer WT, Miller BN (1973) Cellular immune competence of breast cancer patients receiving radiotherapy. Arch Surg 107:531–535

    Article  CAS  PubMed  Google Scholar 

  19. Harris J, Sengar D, Stewart T, Hyslop D (1976) The effect of immunosuppressive chemotherapy on immune function in patients with malignant disease. Cancer 37:1058–1069

    Article  CAS  PubMed  Google Scholar 

  20. Ogi C, Aruga A (2013) Immunological monitoring of anticancer vaccines in clinical trials. Oncoimmunology 2:e26012. doi:10.4161/onci.26012

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ascierto PA, Capone M, Urba WJ et al (2013) The additional facet of immunoscore: immunoprofiling as a possible predictive tool for cancer treatment. J Transl Med 11:54. doi:10.1186/1479-5876-11-54

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Galon J, Franck P, Marincola FM et al (2012) Cancer classification using the immunoscore: a worldwide task force. J Transl Med 10:205. doi:10.1186/1479-5876-10-205

    Article  PubMed Central  PubMed  Google Scholar 

  23. Galon J, Pagès F, Marincola FM et al (2012) The immune score as a new possible approach for the classification of cancer. J Transl Med 10:1. doi:10.1186/1479-5876-10-1

    Article  PubMed Central  PubMed  Google Scholar 

  24. Mahnke YD, Brodie TM, Sallusto F et al (2013) The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol 43:2797–2809. doi:10.1002/eji.201343751

    Article  CAS  PubMed  Google Scholar 

  25. Badoual C, Hans S, Merillon N et al (2013) PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 73:128–138. doi:10.1158/0008-5472.CAN-12-2606

    Article  CAS  PubMed  Google Scholar 

  26. Yan X, Johnson BD, Orentas RJ (2004) Murine CD8 lymphocyte expansion in vitro by artificial antigen-presenting cells expressing CD137L (4-1BBL) is superior to CD28, and CD137L expressed on neuroblastoma expands CD8 tumour-reactive effector cells in vivo. Immunology 112:105–116. doi:10.1111/j.1365-2567.2004.01853.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang W, Yu D, Sarnaik AA et al (2012) Biomarkers on melanoma patient T cells associated with ipilimumab treatment. J Transl Med 10:146. doi:10.1186/1479-5876-10-146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hu L, Liu J, Chen X et al (2010) CTLA-4 gene polymorphism +49 A/G contributes to genetic susceptibility to two infection-related cancers—hepatocellular carcinoma and cervical cancer. Hum Immunol 71:888–891. doi:10.1016/j.humimm.2010.05.023

    Article  CAS  PubMed  Google Scholar 

  29. Grobárová V, Benson V, Rozbeský D et al (2013) Re-evaluation of the involvement of NK cells and C-type lectin-like NK receptors in modulation of immune responses by multivalent GlcNAc-terminated oligosaccharides. Immunol Lett 156:110–117. doi:10.1016/j.imlet.2013.09.009

    Article  PubMed  Google Scholar 

  30. Beatty GL, Chiorean EG, Fishman MP et al (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–1616. doi:10.1126/science.1198443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Walter S, Weinschenk T, Stenzl A et al (2012) Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 18:1254–1261. doi:10.1038/nm.2883

    Article  CAS  PubMed  Google Scholar 

  32. Meyer C, Cagnon L, Costa-Nunes CM et al (2013) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother. doi:10.1007/s00262-013-1508-5

    PubMed  Google Scholar 

  33. Maecker HT, Auffermann-Gretzinger S, Nomura LE et al (2001) Detection of CD4 T-cell responses to a tumor vaccine by cytokine flow cytometry. Clin Cancer Res 7:902s–908s

    CAS  PubMed  Google Scholar 

  34. Perez OD, Mitchell D, Campos R et al (2005) Multiparameter analysis of intracellular phosphoepitopes in immunophenotyped cell populations by flow cytometry. Curr Protoc Cytom. Chapter 6: Unit 6.20. doi:10.1002/0471142956.cy0620s32

  35. Maecker HT (2009) Multiparameter flow cytometry monitoring of T cell responses. Methods Mol Biol 485:375–391. doi:10.1007/978-1-59745-170-3_25

    Article  CAS  PubMed  Google Scholar 

  36. Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822. doi:10.1021/ac901049w

    Article  CAS  PubMed  Google Scholar 

  37. Ornatsky O, Bandura D, Baranov V et al (2010) Highly multiparametric analysis by mass cytometry. J Immunol Methods 361:1–20. doi:10.1016/j.jim.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  38. Tanner SD, Baranov VI, Ornatsky OI et al (2013) An introduction to mass cytometry: fundamentals and applications. Cancer Immunol Immunother 62:955–965. doi:10.1007/s00262-013-1416-8

    Article  PubMed  Google Scholar 

  39. Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696. doi:10.1126/science.1198704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Newell EW, Sigal N, Bendall SC et al (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36:142–152. doi:10.1016/j.immuni.2012.01.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33:323–332. doi:10.1016/j.it.2012.02.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Simonds EF, Bendall SC, Gibbs KD et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 1–8. doi:10.1038/nbt.1991

  43. Amir E-AD, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552. doi:10.1038/nbt.2594

    Article  CAS  Google Scholar 

  44. Newell EW, Sigal N, Nair N et al (2013) Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol 31:623–629. doi:10.1038/nbt.2593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holden T. Maecker.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Eleventh Annual Meeting of the Association for Cancer Immunotherapy (CIMT), held in Mainz, Germany, 14–16 May, 2013. It is part of a CII series of Focussed Research Reviews and meeting report.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, S., Kohrt, H. & Maecker, H.T. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother 63, 713–719 (2014). https://doi.org/10.1007/s00262-014-1521-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1521-3

Keywords

Navigation