Skip to main content

Advertisement

Log in

Alterations of costimulatory molecules and instructive cytokines expressed by dendritic cells in the microenvironment of an endogenous mouse lymphoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Costimulatory surface molecules and instructive cytokines expressed by dendritic cells (DCs) determine the outcome of an immune response. In malignant disease, DCs are often functionally compromised. In most tumors studied so far, the deficient induction of effective T cell responses has been associated with a blockade of DC maturation, but little has been known on DCs infiltrating malignant B cell lymphoma. Here, we investigated for the first time the phenotypic and functional status of DCs in B cell lymphoma, and we analyzed the network of DCs, tumor cells, natural killer (NK) cells and cytokines present in the tumor micromilieu. Therefor, we used an endogenous myc-transgenic mouse lymphoma model, because transplanted tumor cells foster an IFN-γ-driven Th1 antitumor response rather than an immunosuppressive environment, which is observed in autochthonous neoplasias. Lymphoma-infiltrating DCs showed a mature phenotype and a Th2-inducing cytokine pattern. This situation is in contrast to most human malignancies and mouse models described. Cellular contacts between DCs and tumor cells, which involved CD62L on the lymphoma, caused upregulation of costimulatory molecules, whereas IL-10 primarily derived from lymphoma cells induced an IL-12/IL-10 shift in DCs. Thus, alteration of costimulatory molecules and instructive cytokines was mediated by distinct mechanisms. Normal NK cells were able to additionally modulate DC maturation but this effect was absent in the lymphoma environment where IFN-γ production by NK cells was severely impaired. These data are relevant for establishing novel immunotherapeutic approaches against B cell lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  2. Boussiotis VA, Barber DL, Nakarai T, Freeman GJ, Gribben JG, Bernstein GM, D’Andrea AD, Ritz J, Nadler LM (1994) Prevention of T cell anergy by signaling through the γc chain of the IL-2 receptor. Science 266:1039–1042

    Article  CAS  PubMed  Google Scholar 

  3. Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11:191–212

    Article  CAS  PubMed  Google Scholar 

  4. Finkelman FD, Lees A, Birnbaum R, Gause WC, Morris SC (1996) Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J Immunol 157:1406–1414

    CAS  PubMed  Google Scholar 

  5. Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64

    Article  CAS  PubMed  Google Scholar 

  6. Gabrilovich D (2004) Mechanisms and functional significance of tumor-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    Article  CAS  PubMed  Google Scholar 

  7. Chouaib S, Asselin-Paturel C, Mami-Chouaib F, Caignard A, Blay JY (1997) The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol Today 18:493–497

    Article  CAS  PubMed  Google Scholar 

  8. Vicari AP, Caux C, Trinchieri G (2002) Tumor escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12:33–42

    Article  CAS  PubMed  Google Scholar 

  9. e Sousa CR (2001) Dendritic cells as sensors of infection. Immunity 14:495–498

    Article  Google Scholar 

  10. Ebata K, Shimizu Y, Nakayama Y, Minemura M, Murakami J, Kato T, Yasumura S, Takahara T, Sugiyama T, Saito S (2006) Immature NK cells suppress dendritic cell functions during the development of leukemia in a mouse model. J Immunol 176:4113–4124

    Article  CAS  PubMed  Google Scholar 

  11. Zhao F, Falk C, Osen W, Kato M, Schadendorf D, Umansky V (2009) Activation of p38 mitogen-activated protein kinase drives dendritic cells to become tolerogenic in ret transgenic mice spontaneously developing melanoma. Clin Cancer Res 15:4382–4390

    Article  CAS  PubMed  Google Scholar 

  12. Vicari AP, Chiodoni C, Vaure C, Ait-Yahia S, Dercamp C, Matsos F, Reynard O, Taverne C, Merle P, Colombo MP, O′Garra A, Trinchieri G, Caux C (2002) Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 196:541–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Liu Q, Zhang C, Sun A, Zheng Y, Wang L, Cao X (2009) Tumor-educated CD11bhigh Ialow regulatory dendritic cells suppress T cell response through arginase I. J Immunol 182:6207–6216

    Article  CAS  PubMed  Google Scholar 

  14. Perrot I, Blanchard D, Freymond N, Isaac S, Guibert B, Pacheco Y, Lebecque S (2007) Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J Immunol 178:2763–2769

    Article  CAS  PubMed  Google Scholar 

  15. Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau J, Davoust J, Palucka KA, Banchereau J (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Thomachot MC, Bendriss-Vermare N, Massacrier C, Biota C, Treilleux I, Goddard S, Caux C, Bachelot T, Blay JY, Menetrier-Caux C (2004) Breast carcinoma cells promote the differentiation of CD34+ progenitors towards 2 different subpopulations of dendritic cells with CD1a(high)CD86(−)Langerin- and CD1a(+)CD86(+)Langerin+ phenotypes. Int J Cancer 110:710–720

    Article  CAS  PubMed  Google Scholar 

  17. Almand B, Resser JR, Lindman B, Nadaf S, Clark I, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766

    CAS  PubMed  Google Scholar 

  18. Della Bella S, Gennaro M, Vaccari M, Ferraris C, Nicola S, Riva A, Clerici M, Greco M, Villa ML (2003) Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 89:1463–1472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Diao J, Zhao J, Winter E, Cattral MS (2010) Recruitment and differentiation of conventional dendritic cell precursors in tumors. J Immunol 184:1261–1267

    Article  CAS  PubMed  Google Scholar 

  20. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin A, Corzo A, Cho HI, Celis E, Lennox B, Knight SC, Padhya T, McCaffrey TV, McCaffrey JC, Antonia S, Fishman M, Ferris RL, Kagan VE, Gabrilovich DI (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16:880–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Norian LA, Rodriguez PC, O′Mara LA, Zabaleta J, Ochoa AC, Cella M, Allen PM (2009) Tumor-infiltrating regulatory dendritic cells inhibit CD8+ T cell function via l-arginine metabolism. Cancer Res 69:3086–3309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Figel AM, Brech D, Prinz PU, Lettenmeyer UK, Eckl J, Turqueti-Neves A, Mysliwietz J, Anz D, Rieth N, Münchmeier N, Buchner A, Porubsky S, Siegert SI, Segerer S, Nelson PJ, Nößner E (2011) Human renal cell carcinoma induces a dendritic cell subset that uses T-cell crosstalk for tumor-permissive milieu alterations. Am J Pathol 179:436–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Egeter O, Mocikat R, Ghoreschi K, Dieckmann A, Röcken M (2000) Eradication of disseminated lymphomas with CpG-DNA-activated Th1 cells from non-transgenic mice. Cancer Res 60:1515–1520

    CAS  PubMed  Google Scholar 

  24. Ziegler A, Heidenreich R, Braumüller H, Wolburg H, Weidemann S, Mocikat R, Röcken M (2009) EpCAM, a human tumor-associated antigen, promotes Th2 development and tumor immune evasion. Blood 113:3494–3502

    Article  CAS  PubMed  Google Scholar 

  25. Müller-Hermelink N, Braumüller H, Pichler B, Wieder T, Mailhammer R, Schaak K, Ghoreschi K, Yazdi A, Haubner R, Sander CA, Mocikat R, Schwaiger M, Förster I, Huss R, Weber WA, Kneilling M, Röcken M (2008) TNFR1 signaling and IFN-γ signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13:507–518

    Article  PubMed  Google Scholar 

  26. Braumüller H, Wieder T, Brenner E, Aßmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C, Ranta F, Ullrich S, Mocikat R, Braungart K, Mehra T, Fehrenbacher B, Berdel J, Niessner H, Meier F, van den Broek M, Häring HU, Handgretinger R, Quintanilla-Martinez L, Fend F, Pesic M, Bauer J, Zender L, Schaller M, Schulze-Osthoff K, Röcken M (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494:361–365

    Article  PubMed  Google Scholar 

  27. Mocikat R, Braumüller H, Gumy A, Egeter O, Ziegler H, Reusch U, Bubeck A, Louis J, Mailhammer R, Riethmüller G, Koszinowski U, Röcken M (2003) Natural killer cells activated by MHC class I-low targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19:561–569

    Article  CAS  PubMed  Google Scholar 

  28. Adam C, King S, Allgeier T, Braumüller H, Lüking C, Mysliwietz J, Kriegeskorte A, Busch DH, Röcken M, Mocikat R (2005) DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood 106:338–344

    Article  CAS  PubMed  Google Scholar 

  29. Brenner C, King S, Przewoznik M, Wolters I, Adam C, Bornkamm G, Busch D, Röcken M, Mocikat R (2010) Requirements for control of B-cell lymphoma by NK cells. Eur J Immunol 40:494–504

    Article  CAS  PubMed  Google Scholar 

  30. Przewoznik M, Hömberg N, Naujoks M, Pötzl J, Münchmeier N, Brenner C, Anz D, Bourquin C, Nelson P, Röcken M, Mocikat R (2012) Recruitment of natural killer cells in advanced stages of endogenously arising B-cell lymphoma: implications for therapeutic cell transfer. J Immunother 35:217–222

    Article  CAS  PubMed  Google Scholar 

  31. Mocikat R, Selmayr M, Thierfelder S, Lindhofer H (1997) Trioma-based vaccination against B cell lymphoma confers long-lasting tumor immunity. Cancer Res 57:2346–2349

    CAS  PubMed  Google Scholar 

  32. Strehl J, Selmayr M, Kremer J-P, Hültner L, Lindhofer H, Mocikat R (1999) Gene therapy of B-cell lymphoma with cytokine gene-modified trioma cells. Int J Cancer 83:113–120

    Article  CAS  PubMed  Google Scholar 

  33. Kronenberger K, Dieckmann A, Selmayr M, Strehl J, Wahl U, Lindhofer H, Kraal G, Mocikat R (2002) Impact of the lymphoma idiotype on in vivo tumor protection in a vaccination model based on targeting antigens to antigen-presenting cells. Blood 99:1327–1331

    Article  CAS  PubMed  Google Scholar 

  34. Kronenberger K, Nößner E, Frankenberger B, Wahl U, Dreyling M, Hallek M, Mocikat R (2008) A polyvalent cellular vaccine induces T-cell responses against specific self antigens overexpressed in chronic-lymphocytic B-cell leukemia. J Immunother 31:723–730

    Article  CAS  PubMed  Google Scholar 

  35. Kovalchuk AL, Qi CF, Torrey TA, Taddesse-Heath L, Feigenbaum L, Park SS, Gerbitz A, Klobeck G, Hoertnagel K, Polack A, Bornkamm GW, Janz S, Morse HC 3rd (2000) Burkitt lymphoma in the mouse. J Exp Med 192:1183–1190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Chomarat P, Banchereau J, Davoust J, Palucka AK (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1:510–514

    Article  CAS  PubMed  Google Scholar 

  37. Gabrilovich DI, Chen HL, Girgis KR, Cunningham KT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    Article  CAS  PubMed  Google Scholar 

  38. Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG (2005) Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+ CD4+ Tr1 cells. Blood 105:1162–1169

    Article  CAS  PubMed  Google Scholar 

  39. Gagliani N, Magnani CF, Huber S, Gianolini MF, Pala M, Licona-Limon P, Guo B, Herbert DR, Bulfone A, Trentini F, Di Serio C, Bacchetta R, Andreani M, Brockmann L, Gregori S, Flavell RA, Roncarolo M-G (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19:739–746

    Article  CAS  PubMed  Google Scholar 

  40. O′Garra A, Vieira P (2007) Th1 cells control themselves by producing IL-10. Nat Rev Immunol 7:425–428

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from Wilhelm-Sander-Stiftung (2010.108.1) and from Deutsche Krebshilfe (109036 and 109037). We thank A. Geishauser and M. Hagemann for expert technical assistance and S. Edelmann for providing OT-I and OT-II mice. This paper includes parts of the doctoral theses of Marcella Naujoks, Jakob Weiß, Tanja Riedel and Margarethe Przewoznik at the Ludwig-Maximilians-Universität München.

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Mocikat.

Additional information

Marcella Naujoks and Jakob Weiß have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naujoks, M., Weiß, J., Riedel, T. et al. Alterations of costimulatory molecules and instructive cytokines expressed by dendritic cells in the microenvironment of an endogenous mouse lymphoma. Cancer Immunol Immunother 63, 491–499 (2014). https://doi.org/10.1007/s00262-014-1538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1538-7

Keywords

Navigation