Skip to main content

Advertisement

Log in

A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Long conserved mechanisms maintain homeostasis in living creatures in response to a variety of stresses. However, continuous exposure to stress can result in unabated production of stress hormones, especially catecholamines, which can have detrimental health effects. While the long-term effects of chronic stress have well-known physiological consequences, recent discoveries have revealed that stress may affect therapeutic efficacy in cancer. Growing epidemiological evidence reveals strong correlations between progression-free and long-term survival and β-blocker usage in cancer patients. In this review, we summarize the current understanding of how the catecholamines, epinephrine and norepinephrine, affect cancer cell survival and tumor progression. We also highlight new data exploring the potential contributions of stress to immunosuppression in the tumor microenvironment and the implications of these findings for the efficacy of immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

COX:

Cyclo-oxygenase

DC:

Dendritic cell

EGFR:

Epithelial growth factor receptor

EPI:

Epinephrine

IDO:

Indolamine-2,3-oxygenase

MAPK:

Mitogen-activated protein kinase

MDSC:

Myeloid-derived suppressor cell

NE:

Norepinephrine

NK:

Natural killer

PKA:

Protein kinase A

rhIL-2:

Recombinant human IL-2

SNS:

Sympathetic nervous system

TAM:

Tumor-associated macrophage

Treg :

Regulatory T cell

References

  1. Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374–381. doi:10.1038/nrendo.2009.106

    PubMed  CAS  Google Scholar 

  2. Goldstein DS (2010) Adrenal responses to stress. Cell Mol Neurobiol 30:1433–1440. doi:10.1007/s10571-010-9606-9

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Chruscinski A, Brede ME, Meinel L, Lohse MJ, Kobilka BK, Hein L (2001) Differential distribution of beta-adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)- or beta(2)-adrenergic receptors. Mol Pharmacol 60:955–962. doi:10.1124/mol.60.5.955

    PubMed  CAS  Google Scholar 

  4. Fitzgerald PJ (2012) Beta blockers, norepinephrine, and cancer: an epidemiological viewpoint. Clin Epidemiol 4:151–156. doi:10.2147/CLEP.S33695

    PubMed  PubMed Central  Google Scholar 

  5. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K (2011) Beta blockers and breast cancer mortality: a population-based study. J Clin Oncol 29:2635–2644. doi:10.1200/JCO.2010.33.5422

    PubMed  CAS  Google Scholar 

  6. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, Brown EN, Lee RT, Meric-Bernstam F, Sood AK, Conzen SD, Hortobagyi GN, Gonzalez-Angulo AM (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29:2645–2652. doi:10.1200/JCO.2010.33.4441

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Lemeshow S, Sorensen HT, Phillips G, Yang EV, Antonsen S, Riis AH, Lesinski GB, Jackson R, Glaser R (2011) Beta-blockers and survival among Danish patients with malignant melanoma: a population-based cohort study. Cancer Epidemiol Biomark Prev 20:2273–2279. doi:10.1158/1055-9965.EPI-11-0249

    CAS  Google Scholar 

  8. Jansen L, Hoffmeister M, Arndt V, Chang-Claude J, Brenner H (2014) Stage-specific associations between beta blocker use and prognosis after colorectal cancer. Cancer 120:1178–1186. doi:10.1002/cncr.28546

    PubMed  Google Scholar 

  9. Strosberg A (1993) Structure, function, and regulation of adrenergic receptors. Protein Sci 2:1198–1209. doi:10.1002/j.1550-8528.1995.tb00219.x

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Goldstein DS (2003) Catecholamines and stress. Endocr Regul 37:69–80

    PubMed  CAS  Google Scholar 

  11. Summers RJ, McMartin LR (1993) Adrenoceptors and their second messenger systems. J Neurochem 60:10–23. doi:10.1111/j.1471-4159.1993.tb05817.x

    PubMed  CAS  Google Scholar 

  12. Hein L, Kobilka B (1995) Adrenergic receptor signal transduction and regulation. Neuropharmacology 34:357–366. doi:10.1016/0028-3908(95)00018-2

    PubMed  CAS  Google Scholar 

  13. Barnes PJ (1995) Beta-adrenergic receptors and their regulation. Am J Respir Crit Care Med 152:838–860. doi:10.1164/ajrccm.152.3.7663795

    PubMed  CAS  Google Scholar 

  14. Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G (2004) Identification of β-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-κB pathways. Mol Cell 14:303–317. doi:10.1016/S1097-2765(04)00216-3

    PubMed  CAS  Google Scholar 

  15. Chen R, Ho Y, Guo H, Wang Y (2008) Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci 104:283–293. doi:10.1093/toxsci/kfn086

    PubMed  CAS  Google Scholar 

  16. Myers R (1980) Catecholamines and the regulation of body temperature. In: Szekeres L (ed) Adrenergic activators and inhibitors. Springer, Berlin, pp 549–567

    Google Scholar 

  17. Morrison SF (2004) Central pathways controlling brown adipose tissue thermogenesis. News Physiol Sci 19:67–74

    PubMed  Google Scholar 

  18. Cannon B, Nedergaard J (2011) Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol 214:242–253. doi:10.1242/jeb.050989

    PubMed  Google Scholar 

  19. Whitsett JA, Burdsall J, Workman L, Hollinger B, Neely J (1983) Beta-adrenergic receptors in pediatric tumors: uncoupled beta 1-adrenergic receptor in Ewing’s sarcoma. J Natl Cancer Inst 71:779–786. doi:10.1093/jnci/71.4.779

    PubMed  CAS  Google Scholar 

  20. Heesen C, Schulz H, Schmidt M, Gold S, Tessmer W, Schulz K (2002) Endocrine and cytokine responses to acute psychological stress in multiple sclerosis. Brain Behav Immun 16:282–287. doi:10.1006/brbi.2001.0628

    PubMed  CAS  Google Scholar 

  21. Flachenecker P, Reiners K, Krauser M, Wolf A, Toyka KV (2001) Autonomic dysfunction in multiple sclerosis is related to disease activity and progression of disability. Mult Scler 7:327–334. doi:10.1177/135245850100700509

    PubMed  CAS  Google Scholar 

  22. Vandewalle B, Revillion F, Lefebvre J (1990) Functional β-adrenergic receptors in breast cancer cells. J Cancer Res Clin Oncol 116:303–306

    PubMed  CAS  Google Scholar 

  23. Marchetti B, Spinola PG, Plante M, Poyet P, Folléa N, Pelletier G, Labrie F (1989) Beta-adrenergic receptors in DMBA-induced rat mammary tumors: correlation with progesterone receptor and tumor growth. Breast Cancer Res Treat 13:251–263. doi:10.1007/BF02106575

    PubMed  CAS  Google Scholar 

  24. Valles SL, Benlloch M, Rodriguez ML, Mena S, Pellicer JA, Asensi M, Obrador E, Estrela JM (2013) Stress hormones promote growth of B16-F10 melanoma metastases: an interleukin 6-and glutathione-dependent mechanism. J Transl Med 11:72. doi:10.1186/1479-5876-11-72

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Reisine TD, Heisler S, Hook VY, Axelrod J (1983) Activation of beta 2-adrenergic receptors on mouse anterior pituitary tumor cells increases cyclic adenosine 3′:5′-monophosphate synthesis and adrenocorticotropin release. J Neurosci 3:725–732

    PubMed  CAS  Google Scholar 

  26. Sardi I, Giunti L, Bresci C, Buccoliero AM, Degl’innocenti D, Cardellicchio S, Baroni G, Castiglione F, Da Ros M, Fiorini P (2013) Expression of β-adrenergic receptors in pediatric malignant brain tumors. Oncol Lett 5:221–225. doi:10.3892/ol.2012.989

    PubMed  PubMed Central  Google Scholar 

  27. Zhang D, Ma Q, Wang Z, Zhang M, Guo K, Wang F, Wu E (2011) b2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NF B pathway. Mol Cancer 10:146. doi:10.1186/1476-4598-10-146

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Kondratenko TY, Zacharova IV, Kuzina NV, Katukov VY, Severin ES, Kornilova ZC, Perelman MI (1993) Alterations in human lung adrenergic receptors in cancer. Biochem Mol Biol Int 29:123–130

    PubMed  CAS  Google Scholar 

  29. Draoui A, Vandewalle B, Hornez L, Revillion F, Lefebvre J (1991) Beta-adrenergic receptors in human breast cancer: identification, characterization and correlation with progesterone and estradiol receptors. Anticancer Res 11:677–680

    PubMed  CAS  Google Scholar 

  30. Moretti S, Massi D, Farini V, Baroni G, Parri M, Innocenti S, Cecchi R, Chiarugi P (2013) β-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Invest 93:279–290. doi:10.1038/labinvest.2012.175

    PubMed  CAS  Google Scholar 

  31. Nagmani R, Pasco DS, Salas RD, Feller DR (2003) Evaluation of beta-adrenergic receptor subtypes in the human prostate cancer cell line-LNCaP. Biochem Pharmacol 65:1489–1494

    PubMed  CAS  Google Scholar 

  32. Heinrichs SC, Koob GF (2006) Application of experimental stressors in laboratory rodents. Curr Protoc Neurosci. doi:10.1002/0471142301.ns0804s34 Chapter 8:Unit 8.4

    PubMed  Google Scholar 

  33. Szpunar MJ, Burke KA, Dawes RP, Brown EB, Madden KS (2013) The antidepressant desipramine and alpha2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure. Cancer Prev Res (Phila) 6:1262–1272. doi:10.1158/1940-6207.CAPR-13-0079

    CAS  Google Scholar 

  34. Hassan S, Karpova Y, Baiz D, Yancey D, Pullikuth A, Flores A, Register T, Cline JM, D’Agostino R Jr, Danial N (2013) Behavioral stress accelerates prostate cancer development in mice. J Clin Invest 123:874. doi:10.1172/JCI63324

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Lutgendorf SK, DeGeest K, Dahmoush L, Farley D, Penedo F, Bender D, Goodheart M, Buekers TE, Mendez L, Krueger G, Clevenger L, Lubaroff DM, Sood AK, Cole SW (2011) Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients. Brain Behav Immun 25:250–255. doi:10.1016/j.bbi.2010.10.012

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Sardi I, Giunti L, Bresci C, Buccoliero AM, Degl’innocenti D, Cardellicchio S, Baroni G, Castiglione F, Ros MD, Fiorini P, Giglio S, Genitori L, Arico M, Filippi L (2013) Expression of beta-adrenergic receptors in pediatric malignant brain tumors. Oncol Lett 5:221–225. doi:10.3892/ol.2012.989

    PubMed  PubMed Central  Google Scholar 

  37. Powe DG, Voss MJ, Habashy HO, Zanker KS, Green AR, Ellis IO, Entschladen F (2011) Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: an immunohistochemical study. Breast Cancer Res Treat 130:457–463. doi:10.1007/s10549-011-1371-z

    PubMed  CAS  Google Scholar 

  38. Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S (1991) G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci USA 88:11354–11358

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Flint MS, Baum A, Episcopo B, Knickelbein KZ, Liegey Dougall AJ, Chambers WH, Jenkins FJ (2013) Chronic exposure to stress hormones promotes transformation and tumorigenicity of 3T3 mouse fibroblasts. Stress 16:114–121. doi:10.3109/10253890.2012.686075

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, Towers AJ, Williams B, Lam CM, Xiao K, Shenoy SK, Gregory SG, Ahn S, Duckett DR, Lefkowitz RJ (2011) A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. Nature 477:349–353. doi:10.1038/nature10368

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Al-Wadei MH, Al-Wadei HA, Schuller HM (2012) Pancreatic cancer cells and normal pancreatic duct epithelial cells express an autocrine catecholamine loop that is activated by nicotinic acetylcholine receptors alpha3, alpha5, and alpha7. Mol Cancer Res 10:239–249. doi:10.1158/1541-7786.MCR-11-0332

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Shan T, Ma Q, Zhang D, Guo K, Liu H, Wang F, Wu E (2011) β2-adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur J Pharmacol 665:1–7. doi:10.1016/j.ejphar.2011.04.055

    PubMed  CAS  Google Scholar 

  43. Zhang D, Ma QY, Hu HT, Zhang M (2010) beta2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFkappaB and AP-1. Cancer Biol Ther 10:19–29. doi:10.4161/cbt.10.1.11944

    PubMed  CAS  Google Scholar 

  44. Sastry KSR, Karpova Y, Prokopovich S, Smith AJ, Essau B, Gersappe A, Carson JP, Weber MJ, Register TC, Chen YQ, Penn RB, Kulik G (2007) Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem 282:14094–14100. doi:10.1074/jbc.M611370200

    PubMed  CAS  Google Scholar 

  45. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 Not BCL-XL. Cell 87:619–628. doi:10.1016/S0092-8674(00)81382-3

    PubMed  CAS  Google Scholar 

  46. Tan Y, Demeter MR, Ruan H, Comb MJ (2000) BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J Biol Chem 275:25865–25869. doi:10.1074/jbc.M004199200

    PubMed  CAS  Google Scholar 

  47. Dramsi S, Scheid MP, Maiti A, Hojabrpour P, Chen X, Schubert K, Goodlett DR, Aebersold R, Duronio V (2002) Identification of a novel phosphorylation site, Ser-170, as a regulator of bad pro-apoptotic activity. J Biol Chem 277:6399–6405. doi:10.1074/jbc.M109990200

    PubMed  CAS  Google Scholar 

  48. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108. doi:10.1038/nature10653

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Uchida K, Shiuchi T, Inada H, Minokoshi Y, Tominaga M (2010) Metabolic adaptation of mice in a cool environment. Pflügers Arch Eur J Physiol 459:765–774

    CAS  Google Scholar 

  50. Spector WS (1956) Handbook of biological data. W. B. Saunders Co, Philadelphia

    Google Scholar 

  51. Gordon CJ (2012) Thermal physiology of laboratory mice: defining thermoneutrality. J Therm Biol 37:654–685. doi:10.1016/j.jtherbio.2012.08.004

    Google Scholar 

  52. Kokolus KM, Capitano ML, Lee CT, Eng JW, Waight JD, Hylander BL, Sexton S, Hong CC, Gordon CJ, Abrams SI, Repasky EA (2013) Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc Natl Acad Sci USA 110:20176–20181. doi:10.1073/pnas.1304291110

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Sood AK, Armaiz-Pena GN, Halder J, Nick AM, Stone RL, Hu W, Carroll AR, Spannuth WA, Deavers MT, Allen JK, Han LY, Kamat AA, Shahzad MM, McIntyre BW, Diaz-Montero CM, Jennings NB, Lin YG, Merritt WM, DeGeest K, Vivas-Mejia PE, Lopez-Berestein G, Schaller MD, Cole SW, Lutgendorf SK (2010) Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest 120:1515–1523. doi:10.1172/JCI40802

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Armaiz-Pena GN, Allen JK, Cruz A, Stone RL, Nick AM, Lin YG, Han LY, Mangala LS, Villares GJ, Vivas-Mejia P, Rodriguez-Aguayo C, Nagaraja AS, Gharpure KM, Wu Z, English RD, Soman KV, Shahzad MM, Zigler M, Deavers MT, Zien A, Soldatos TG, Jackson DB, Wiktorowicz JE, Torres-Lugo M, Young T, De Geest K, Gallick GE, Bar-Eli M, Lopez-Berestein G, Cole SW, Lopez GE, Lutgendorf SK, Sood AK (2013) Src activation by beta-adrenoreceptors is a key switch for tumour metastasis. Nat Commun 4:1403. doi:10.1038/ncomms2413

    PubMed  PubMed Central  Google Scholar 

  55. Shahzad MMK, Arevalo JM, Armaiz-Pena GN, Lu C, Stone RL, Moreno-Smith M, Nishimura M, Lee J, Jennings NB, Bottsford-Miller J, Vivas-Mejia P, Lutgendorf SK, Lopez-Berestein G, Bar-Eli M, Cole SW, Sood AK (2010) Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J Biol Chem 285:35462–35470. doi:10.1074/jbc.M110.109579

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Nilsson MB, Armaiz-Pena G, Takahashi R, Lin YG, Trevino J, Li Y, Jennings N, Arevalo J, Lutgendorf SK, Gallick GE, Sanguino AM, Lopez-Berestein G, Cole SW, Sood AK (2007) Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. J Biol Chem 282:29919–29926. doi:10.1074/jbc.M611539200

    PubMed  CAS  Google Scholar 

  57. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell S, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA, Elefteriou F (2012) stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10:e1001363. doi:10.1371/journal.pbio.1001363

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, Frenette PS (2013) Autonomic nerve development contributes to prostate cancer progression. Science 341:1236361. doi:10.1126/science.1236361

    PubMed  Google Scholar 

  59. Glaser R, Kiecolt-Glaser J (2005) How stress damages immune system and health. Discov Med 5:165–169

    PubMed  Google Scholar 

  60. Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5:243–251. doi:10.1038/nri1571

  61. Podojil JR, Sanders VM (2003) Selective regulation of mature IgG1 transcription by CD86 and beta 2-adrenergic receptor stimulation. J Immunol 170:5143–5151

    PubMed  CAS  Google Scholar 

  62. Swanson MA, Lee WT, Sanders VM (2001) IFN-gamma production by Th1 cells generated from naive CD4 + T cells exposed to norepinephrine. J Immunol 166:232–240

    PubMed  CAS  Google Scholar 

  63. Kohm AP, Tang Y, Sanders VM, Jones SB (2000) Activation of antigen-specific CD4 + Th2 cells and B cells in vivo increases norepinephrine release in the spleen and bone marrow. J Immunol 165:725–733

    PubMed  CAS  Google Scholar 

  64. Kohm AP, Sanders VM (2001) Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4 + T and B lymphocyte function in vitro and in vivo. Pharmacol Rev 53:487–525

    PubMed  CAS  Google Scholar 

  65. Stahn C, Löwenberg M, Hommes DW, Buttgereit F (2007) Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol 275:71–78. doi:10.1016/j.mce.2007.05.019

    PubMed  CAS  Google Scholar 

  66. Coutinho AE, Chapman KE (2011) The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 335:2–13. doi:10.1016/j.mce.2010.04.005

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Dhabhar FS, Mcewen BS (1997) Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 11:286–306. doi:10.1006/brbi.1997.0508

    PubMed  CAS  Google Scholar 

  68. Dhabhar FS (2002) Stress-induced augmentation of immune function—the role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav Immun 16:785–798. doi:10.1016/S0889-1591(02)00036-3

    PubMed  CAS  Google Scholar 

  69. McEwen BS (2006) Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin Neurosci 8:367–381

    PubMed  PubMed Central  Google Scholar 

  70. Frohman EM, Vayuvegula B, Gupta S, van den Noort S (1988) Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms. Proc Natl Acad Sci USA 85:1292–1296

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Zhang Y, Guan Z, Reader B, Shawler T, Mandrekar-Colucci S, Huang K, Weil Z, Bratasz A, Wells J, Powell ND, Sheridan JF, Whitacre CC, Rabchevsky AG, Nash MS, Popovich PG (2013) Autonomic dysreflexia causes chronic immune suppression after spinal cord injury. J Neurosci 33:12970–12981. doi:10.1523/JNEUROSCI.1974-13.2013

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Hamasato EK, Ligeiro de Oliveira AP, Alves GJ, Palermo-Neto J (2013) The influence of cohabitation with a sick cage mate on pulmonary allergic inflammatory response in mice. Brain Behav Immun 32:e17–e18. doi:10.1016/j.bbi.2013.07.072

    Google Scholar 

  73. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, von zur Muhlen C, Bode C, Fricchione GL, Denninger J (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758. doi:10.1038/nm.3589

    PubMed  CAS  Google Scholar 

  74. Cosentino M, Fietta AM, Ferrari M, Rasini E, Bombelli R, Carcano E, Saporiti F, Meloni F, Marino F, Lecchini S (2007) Human CD4 + CD25 + regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642. doi:10.1182/blood-2006-01-028423

    PubMed  CAS  Google Scholar 

  75. Bhowmick S, Singh A, Flavell RA, Clark RB, O’Rourke J, Cone RE (2009) The sympathetic nervous system modulates CD4(+)FoxP3(+) regulatory T cells via a TGF-beta-dependent mechanism. J Leukoc Biol 86:1275–1283. doi:10.1189/jlb.0209107

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Guereschi MG, Araujo LP, Maricato JT, Takenaka MC, Nascimento VM, Vivanco BC, Reis VO, Keller AC, Brum PC, Basso AS (2013) Beta2-adrenergic receptor signaling in CD4 Foxp3 regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur J Immunol 43:1001–1012. doi:10.1002/eji.201243005

    PubMed  CAS  Google Scholar 

  77. Kokolus KM, Spangler HM, Povinelli BJ, Farren MR, Lee KP, Repasky EA (2014) Stressful presentations: mild chronic cold stress in mice Influences baseline properties of dendritic cells. Front Immunol 5:23. doi:10.3389/fimmu.2014.00023

    PubMed  PubMed Central  Google Scholar 

  78. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L (2010) The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 70:7042–7052

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Bernard AC, Fitzpatrick EA, Maley ME, Gellin GL, Tsuei BJ, Arden WA, Boulanger BR, Kearney PA, Ochoa JB (2000) Beta adrenoceptor regulation of macrophage arginase activity. Surgery 127:412–418. doi:10.1067/msy.2000.104115

    PubMed  CAS  Google Scholar 

  80. Flierl MA, Rittirsch D, Nadeau BA, Sarma JV, Day DE, Lentsch AB, Huber-Lang MS, Ward PA (2009) Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One 4:e4414. doi:10.1371/journal.pone.0004414

    PubMed  PubMed Central  Google Scholar 

  81. Waight JD, Hu Q, Miller A, Liu S, Abrams SI (2011) Tumor-derived G-CSF facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS One 6:e27690. doi:10.1371/journal.pone.0027690

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281. doi:10.1016/j.semcancer.2012.01.011

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi:10.1038/nri2506

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Jin J, Wang X, Wang Q, Guo X, Cao J, Zhang X, Zhu T, Zhang D, Wang W, Wang J, Shen B, Gao X, Shi Y, Zhang J (2013) Chronic psychological stress induces the accumulation of myeloid-derived suppressor cells in mice. PLoS One 8:e74497. doi:10.1371/journal.pone.0074497

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Mundy-Bosse BL, Thornton LM, Yang HC, Andersen BL, Carson WE (2011) Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients. Cell Immunol 270:80–87. doi:10.1016/j.cellimm.2011.04.003

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Karp CL (2012) Unstressing intemperate models: how cold stress undermines mouse modeling. J Exp Med 209:1069–1074. doi:10.1084/jem.20120988

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Benish M, Bartal I, Goldfarb Y, Levi B, Avraham R, Raz A, Ben-Eliyahu S (2008) Perioperative use of β-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol 15:2042–2052. doi:10.1245/s10434-008-9890-5

    PubMed  Google Scholar 

  88. Rosenne E, Sorski L, Shaashua L, Neeman E, Matzner P, Levi B, Ben-Eliyahu S (2014) In vivo suppression of NK cell cytotoxicity by stress and surgery: glucocorticoids have a minor role compared to catecholamines and prostaglandins. Brain Behav Immun 37:207–219. doi:10.1016/j.bbi.2013.12.007

    PubMed  CAS  Google Scholar 

  89. Goldfarb Y, Sorski L, Benish M, Levi B, Melamed R, Ben-Eliyahu S (2011) Improving postoperative immune status and resistance to cancer metastasis: a combined perioperative approach of immunostimulation and prevention of excessive surgical stress responses. Ann Surg 253:798–810. doi:10.1097/SLA.0b013e318211d7b5

    PubMed  Google Scholar 

  90. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    PubMed  CAS  Google Scholar 

  91. Wang L, Liu H, Chen X, Zhang M, Xie K, Ma Q (2012) Immune Sculpting of Norepinephrine on MHC-I, B7-1, IDO and B7-H1 Expression and Regulation of Proliferation and Invasion in Pancreatic Carcinoma Cells. PLoS One 7:e45491. doi:10.1371/journal.pone.0045491

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Valmori D, Souleimanian NE, Tosello V, Bhardwaj N, Adams S, O’Neill D, Pavlick A, Escalon JB, Cruz CM, Angiulli A, Angiulli F, Mears G, Vogel SM, Pan L, Jungbluth AA, Hoffmann EW, Venhaus R, Ritter G, Old LJ, Ayyoub M (2007) Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci USA 104:8947–8952. doi:10.1073/pnas.0703395104

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Burch PA, Croghan GA, Gastineau DA, Jones LA, Kaur JS, Kylstra JW, Richardson RL, Valone FH, Vuk-Pavlović S (2004) Immunotherapy (APC8015, Provenge®) targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-independent prostate cancer: a phase 2 trial. Prostate 60:197–204. doi:10.1002/pros.20040

    PubMed  CAS  Google Scholar 

  94. Jungbluth AA, Chen Y, Stockert E, Busam KJ, Kolb D, Iversen K, Coplan K, Williamson B, Altorki N, Old LJ (2001) Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer 92:856–860. doi:10.1002/ijc.1282

    PubMed  CAS  Google Scholar 

  95. Shaashua L, Rosenne E, Neeman E, Sorski L, Sominsky L, Matzner P, Page GG, Ben-Eliyahu S (2014) Plasma IL-12 levels are suppressed in vivo by stress and surgery through endogenous release of glucocorticoids and prostaglandins but not catecholamines or opioids. Psychoneuroendocrinology 42:11–23. doi:10.1016/j.psyneuen.2013.12.001

    PubMed  CAS  Google Scholar 

  96. Shaashua L, Sominsky L, Levi B, Sorski L, Reznick M, Page G, Ben-Eliyahu S (2012) In vivo suppression of plasma IL-12 levels by acute and chronic stress paradigms: potential mediating mechanisms and sex differences. Brain Behav Immun 26:996–1005. doi:10.1016/j.bbi.2012.05.012

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Boyman O, Surh CD, Sprent J (2006) Potential use of IL-2/anti-IL-2 antibody immune complexes for the treatment of cancer and autoimmune disease. Expert Opin Biol Ther 6:1323–1331. doi:10.1517/14712598.6.12.1323

    PubMed  CAS  Google Scholar 

  98. West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, Thurman GB, Oldham RK (1987) Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 316:898–905. doi:10.1056/NEJM198704093161502

    PubMed  CAS  Google Scholar 

  99. Glaser R, Kennedy S, Lafuse WP, Bonneau RH, Speicher C, Hillhouse J, Kiecolt-Glaser JK (1990) Psychological stress-induced modulation of interleukin 2 receptor gene expression and interleukin 2 production in peripheral blood leukocytes. Arch Gen Psychiatry 47:707–712. doi:10.1001/archpsyc.1990.01810200015002

    PubMed  CAS  Google Scholar 

  100. Messina G, Lissoni P, Bartolacelli E, Fumagalli L, Brivio F, Colombo E, Gardani GS (2007) Efficacy of IL-2 immunotherapy in metastatic renal cell carcinoma in relation to the psychic profile as evaluated using the Rorschach test. Anticancer Res 27:2985–2988

    PubMed  CAS  Google Scholar 

  101. Shi M, Yang Z, Hu M, Liu D, Hu Y, Qian L, Zhang W, Chen H, Guo L, Yu M, Song L, Ma Y, Guo N (2013) Catecholamine-Induced beta2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression. J Immunol 190:5600–5608. doi:10.4049/jimmunol.1202364

    PubMed  CAS  Google Scholar 

  102. Collins DM, O’Donovan N, McGowan PM, O’Sullivan F, Duffy MJ, Crown J (2012) Trastuzumab induces antibody-dependent cell-mediated cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Ann Oncol 23:1788–1795. doi:10.1093/annonc/mdr484

    PubMed  CAS  Google Scholar 

  103. Cole SW, Sood AK (2012) Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18:1201–1206. doi:10.1158/1078-0432.CCR-11-0641

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107:4275–4280. doi:10.1073/pnas.0915174107

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281. doi:10.1038/nri3191

    PubMed  CAS  Google Scholar 

  106. List T, Neri D (2013) Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin Pharmacol 5(Suppl 1):29–45. doi:10.2147/CPAA.S49231

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Wang HM, Liao ZX, Komaki R, Welsh JW, O’Reilly MS, Chang JY, Zhuang Y, Levy LB, Lu C, Gomez DR (2013) Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol 24:1312–1319. doi:10.1093/annonc/mds616

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Botteri E, Munzone E, Rotmensz N, Cipolla C, De Giorgi V, Santillo B, Zanelotti A, Adamoli L, Colleoni M, Viale G, Goldhirsch A, Gandini S (2013) Therapeutic effect of beta-blockers in triple-negative breast cancer postmenopausal women. Breast Cancer Res Treat 140:567–575. doi:10.1007/s10549-013-2654-3

    PubMed  CAS  Google Scholar 

  109. Diaz ES, Karlan BY, Li AJ (2012) Impact of beta blockers on epithelial ovarian cancer survival. Gynecol Oncol 127:375–378. doi:10.1016/j.ygyno.2012.07.102

    PubMed  CAS  Google Scholar 

  110. Johannesdottir SA, Schmidt M, Phillips G, Glaser R, Yang EV, Blumenfeld M, Lemeshow S (2013) Use of beta-blockers and mortality following ovarian cancer diagnosis: a population-based cohort study. BMC Cancer 13:85. doi:10.1186/1471-2407-13-85

    PubMed  PubMed Central  Google Scholar 

  111. Livingstone E, Hollestein LM, van Herk-Sukel MP, van de Poll-Franse L, Nijsten T, Schadendorf D, de Vries E (2013) Beta-blocker use and all-cause mortality of melanoma patients: results from a population-based Dutch cohort study. Eur J Cancer 49:3863–3871. doi:10.1016/j.ejca.2013.07.141

    PubMed  CAS  Google Scholar 

  112. Shah SM, Carey IM, Owen CG, Harris T, DeWilde S, Cook DG (2011) Does β-adrenoceptor blocker therapy improve cancer survival? Findings from a population-based retrospective cohort study. Br J Clin Pharmacol 72:157–161. doi:10.1111/j.1365-2125.2011.03980.x

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jeanne Prendergast for editorial assistance. This work was supported by National Institute of Health Grants R01 CA135368 and T32 CA 085183 and Breast Cancer Research and Education Fund through NY State Department of Health contract # C028252.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Repasky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eng, J.WL., Kokolus, K.M., Reed, C.B. et al. A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol Immunother 63, 1115–1128 (2014). https://doi.org/10.1007/s00262-014-1617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1617-9

Keywords

Navigation