Skip to main content

Advertisement

Log in

Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Elevated levels of myeloid-derived suppressor cells (MDSCs) induced by tumor-derived factors are associated with inhibition of immune responses in patients with gastrointestinal malignancies. We hypothesized that pro-MDSC cytokines and levels of MDSC in the peripheral blood would be elevated in pancreatic adenocarcinoma patients with progressive disease. Peripheral blood mononuclear cells (PBMCs) were isolated from 16 pancreatic cancer patients undergoing chemotherapy and phenotyped for MDSC using a five antigen panel (CD33, HLA-DR, CD11b, CD14, CD15). Patients with stable disease had significantly lower MDSC levels in the peripheral blood than those with progressive disease (1.41 ± 1.12 vs. 5.14 ± 4.58 %, p = 0.013, Wilcoxon test). A cutoff of 2.5 % MDSC identified patients with progressive disease. Patients with ECOG performance status ≥2 had a weaker association with increased levels of MDSC. Plasma was obtained from 15 chemonaive patients, 13 patients undergoing chemotherapy and 9 normal donors. Increases in the levels of pro-MDSC cytokines were observed for pancreatic cancer patients versus controls, and the pro-MDSC cytokine IL-6 was increased in those patients undergoing chemotherapy. This study suggests that MDSC in peripheral blood may be a predictive biomarker of chemotherapy failure in pancreatic cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCL5:

Chemokine (C-C motif) ligand 5 [synonym: RANTES]

CD:

Cluster of differentiation

CT:

Computerized tomography

FGF2:

Basic fibroblast growth factor

FOLFIRINOX:

Chemotherapy consisting of 5-FU, leucovorin, irinotecan and oxaliplatin

G-CSF:

Granulocyte colony-stimulating factor

HLA:

Human leukocyte antigen

IPA:

Ingenuity pathway analysis

MCP-1:

Monocyte chemotactic protein 1

MDSC:

Myeloid-derived suppressor cell

MIP-1α:

Macrophage inflammatory protein-1alpha

MPACT:

Metastatic pancreatic adenocarcinoma clinical trial

PBMC:

Peripheral blood mononuclear cell

PDGF-bb:

Platelet-derived growth factor–beta

RAGE:

Receptor for advanced glycation endproducts

RANTES:

Regulated on activation, normal T cell expressed and secreted [synonym: CCL5]

STAT3/SOC3:

Signal transducer and activator of transcription 3/suppressor of cytokine signaling 3

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30. doi:10.3322/caac.21166

    Article  PubMed  Google Scholar 

  2. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C, Bennouna J, Bachet JB, Khemissa-Akouz F, Pere-Verge D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto-Grillot C, Ducreux M (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825. doi:10.1056/NEJMoa1011923

    Article  CAS  PubMed  Google Scholar 

  3. Kim R (2011) FOLFIRINOX: a new standard treatment for advanced pancreatic cancer? Lancet Oncol 12(1):8–9. doi:10.1016/S1470-2045(10)70237-0

    Article  PubMed  Google Scholar 

  4. Ying JE, Zhu LM, Liu BX (2012) Developments in metastatic pancreatic cancer: Is gemcitabine still the standard? World J Gastroenterol 18(8):736–745. doi:10.3748/wjg.v18.i8.736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kothari N, Saif MW, Kim R (2013) First-line treatment for advanced pancreatic cancer. JOP 14(2):129–132. doi:10.6092/1590-8577/1477

    PubMed  Google Scholar 

  6. Patel J (2013) Drug combination extends late-stage pancreatic cancer survival in phase III clinical trial. Expert Rev Clin Pharmacol 6(2):100

    PubMed  Google Scholar 

  7. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67. doi:10.1158/2159-8274.CD-10-0028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022. doi:10.1038/ni.2703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jarboe J, Gupta A, Saif W (2014) Therapeutic human monoclonal antibodies against cancer. Methods Mol Biol 1060:61–77. doi:10.1007/978-1-62703-586-6_4

    Article  PubMed  Google Scholar 

  10. Drake CG (2012) Combination immunotherapy approaches. Ann Oncol 23(Suppl 8):viii41–viii46. doi:10.1093/annonc/mds262

    Article  PubMed  Google Scholar 

  11. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67(19):9518–9527. doi:10.1158/0008-5472.CAN-07-0175

    Article  CAS  PubMed  Google Scholar 

  12. Evans A, Costello E (2012) The role of inflammatory cells in fostering pancreatic cancer cell growth and invasion. Front Physiol 3:270. doi:10.3389/fphys.2012.00270

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268. doi:10.1038/nri3175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Mundy-Bosse BL, Young GS, Bauer T, Binkley E, Bloomston M, Bill MA, Bekaii-Saab T, Carson WE 3rd, Lesinski GB (2011) Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4(+) T cells from patients with GI malignancy. Cancer Immunol Immunother 60(9):1269–1279. doi:10.1007/s00262-011-1029-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60(10):1419–1430. doi:10.1007/s00262-011-1028-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhao F, Obermann S, von Wasielewski R, Haile L, Manns MP, Korangy F, Greten TF (2009) Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology 128(1):141–149. doi:10.1111/j.1365-2567.2009.03105.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J, Gillanders WE, Linehan DC, Goedegebuure P (2012) Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 61(9):1373–1385. doi:10.1007/s00262-011-1178-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Duffy MJ, Sturgeon C, Lamerz R, Haglund C, Holubec VL, Klapdor R, Nicolini A, Topolcan O, Heinemann V (2010) Tumor markers in pancreatic cancer: a European Group on Tumor Markers (EGTM) status report. Ann Oncol 21(3):441–447. doi:10.1093/annonc/mdp332

    Article  CAS  PubMed  Google Scholar 

  19. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G, Garrett-Mayer E, Montero AJ, Bronte V, Mandruzzato S (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118(8):2254–2265. doi:10.1182/blood-2010-12-325753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ruiz-Tovar J, Martin-Perez E, Fernandez-Contreras ME, Reguero-Callejas ME, Gamallo-Amat C (2011) Identification of prognostic factors in pancreatic cancer. Cir Cir 79(4):313–322

    PubMed  Google Scholar 

  21. Markowitz J, Carson WE (1835) 3rd (2013) Review of S100A9 biology and its role in cancer. Biochim Biophys Acta 1:100–109. doi:10.1016/j.bbcan.2012.10.003

    Google Scholar 

  22. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249. doi:10.1084/jem.20080132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J, Nguyen M, Olsson A, Nawroth PP, Bierhaus A, Varki N, Kronenberg M, Freeze HH, Srikrishna G (2008) RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29(10):2035–2043. doi:10.1093/carcin/bgn188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Gebhardt C, Riehl A, Durchdewald M, Nemeth J, Furstenberger G, Muller-Decker K, Enk A, Arnold B, Bierhaus A, Nawroth PP, Hess J, Angel P (2008) RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 205(2):275–285. doi:10.1084/jem.20070679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bjork P, Bjork A, Vogl T, Stenstrom M, Liberg D, Olsson A, Roth J, Ivars F, Leanderson T (2009) Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol 7(4):e97. doi:10.1371/journal.pbio.1000097

    Article  PubMed  Google Scholar 

  26. Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Kloppel G, Yoshimura A, Reindl W, Sipos B, Akira S, Schmid RM, Algul H (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19(4):456–469. doi:10.1016/j.ccr.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  27. Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, Fuchs JR, Eubank TD, Frankel WL, Bekaii-Saab T, Bloomston M, Lesinski GB (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73(10):3007–3018. doi:10.1158/0008-5472.CAN-12-4601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vernon PJ, Loux TJ, Schapiro NE, Kang R, Muthuswamy R, Kalinski P, Tang D, Lotze MT, Zeh HJ 3rd (2013) The receptor for advanced glycation end products promotes pancreatic carcinogenesis and accumulation of myeloid-derived suppressor cells. J Immunol 190(3):1372–1379. doi:10.4049/jimmunol.1201151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Vernon PJ, Zeh Iii HJ, Lotze MT (2013) The myeloid response to pancreatic carcinogenesis is regulated by the receptor for advanced glycation end-products. Oncoimmunology 2(5):e24184. doi:10.4161/onci.24184

    Article  PubMed Central  PubMed  Google Scholar 

  30. Goedegebuure P, Mitchem JB, Porembka MR, Tan MC, Belt BA, Wang-Gillam A, Gillanders WE, Hawkins WG, Linehan DC (2011) Myeloid-derived suppressor cells: general characteristics and relevance to clinical management of pancreatic cancer. Curr Cancer Drug Targets 11(6):734–751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21(6):822–835. doi:10.1016/j.ccr.2012.04.025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ghansah T, Vohra N, Kinney K, Weber A, Kodumudi K, Springett G, Sarnaik AA, Pilon-Thomas S (2013) Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma. Cancer Immunol Immunother 62(6):1083–1091. doi:10.1007/s00262-013-1407-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Annels NE, Shaw VE, Gabitass RF, Billingham L, Corrie P, Eatock M, Valle J, Smith D, Wadsley J, Cunningham D, Pandha H, Neoptolemos JP, Middleton G (2014) The effects of gemcitabine and capecitabine combination chemotherapy and of low-dose adjuvant GM-CSF on the levels of myeloid-derived suppressor cells in patients with advanced pancreatic cancer. Cancer Immunol Immunother 63(2):175–183. doi:10.1007/s00262-013-1502-y

    Article  CAS  PubMed  Google Scholar 

  34. Bunt SK, Mohr AM, Bailey JM, Grandgenett PM, Hollingsworth MA (2013) Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer. Cancer Immunol Immunother 62(2):225–236. doi:10.1007/s00262-012-1324-3

    Article  CAS  PubMed  Google Scholar 

  35. Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, Rosenberg SA (2012) Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 18(6):1672–1683. doi:10.1158/1078-0432.CCR-11-3050

    Article  CAS  PubMed  Google Scholar 

  36. Huang C, Huang R, Chang W, Jiang T, Huang K, Cao J, Sun X, Qiu Z (2012) The expression and clinical significance of pSTAT3, VEGF and VEGF-C in pancreatic adenocarcinoma. Neoplasma 59(1):52–61. doi:10.4149/neo_2012_007

    Article  CAS  PubMed  Google Scholar 

  37. Taeger J, Moser C, Hellerbrand C, Mycielska ME, Glockzin G, Schlitt HJ, Geissler EK, Stoeltzing O, Lang SA (2011) Targeting FGFR/PDGFR/VEGFR impairs tumor growth, angiogenesis, and metastasis by effects on tumor cells, endothelial cells, and pericytes in pancreatic cancer. Mol Cancer Ther 10(11):2157–2167. doi:10.1158/1535-7163.MCT-11-0312

    Article  CAS  PubMed  Google Scholar 

  38. Assifi MM, Hines OJ (2011) Anti-angiogenic agents in pancreatic cancer: a review. Anticancer Agents Med Chem 11(5):464–469

    Article  CAS  PubMed  Google Scholar 

  39. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429. doi:10.1016/j.ccr.2012.01.007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rebe C, Apetoh L, Ghiringhelli F (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57–64. doi:10.1038/nm.2999

    Article  CAS  PubMed  Google Scholar 

  41. Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, Carpenter D, Mitchem JB, Plambeck-Suess SM, Worley LA, Goetz BD, Wang-Gillam A, Eberlein TJ, Denardo DG, Goedegebuure SP, Linehan DC (2013) Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res 19(13):3404–3415. doi:10.1158/1078-0432.CCR-13-0525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge National Institute of Health grant T32CA090223 (William Edgar Carson, III) and the Pelotonia Postdoctoral Fellowship (to J. Markowitz). Taylor Brooks was supported by the Pelotonia undergraduate fellowship program. Any opinions, findings and conclusions expressed in this material are those of the author(s) and do not necessarily reflect those of the Pelotonia Fellowship Program. We would also like to acknowledge the National Cancer Institute grant P01CA095426.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Carson III.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markowitz, J., Brooks, T.R., Duggan, M.C. et al. Patients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of disease. Cancer Immunol Immunother 64, 149–159 (2015). https://doi.org/10.1007/s00262-014-1618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1618-8

Keywords

Navigation