Skip to main content

Advertisement

Log in

Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: results of a phase II study

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The intratumoral injection of cytokines, in particular IL2, has shown promise for cutaneous melanoma patients with unresectable disease or continuous recurrence despite surgery. We recently reported that the intralesional injection of L19-IL2, an immunocytokine combining IL2 and the human monoclonal antibody fragment L19, resulted in efficient regional control of disease progression, increased time to distant metastasis and evidence of effect on circulating immune cell populations. We have also shown in preclinical models of cancer a remarkable synergistic effect of the combination of L19-IL2 with L19-TNF, a second clinical-stage immunocytokine, based on the same L19 antibody fused to TNF. Here, we describe the results of a phase II clinical trial based on the intralesional administration of L19-IL2 and L19-TNF in patients with stage IIIC and IVM1a metastatic melanoma, who were not candidate to surgery. In 20 efficacy-evaluable patients, 32 melanoma lesions exhibited complete responses upon intralesional administration of the two products, with mild side effects mainly limited to injection site reactions. Importantly, we observed complete responses in 7/13 (53.8 %) non-injected lesions (4 cutaneous, 3 lymph nodes), indicating a systemic activity of the intralesional immunostimulatory treatment. The intralesional administration of L19-IL2 and L19-TNF represents a simple and effective method for the local control of inoperable melanoma lesions, with a potential to eradicate them or make them suitable for a facile surgical removal of the residual mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BCG:

Bacillus Calmette–Guerin

CD:

Cluster of differentiation

CR:

Complete response

DCR:

Disease control rate

ECOG:

Eastern Cooperative Oncology Group

EDB:

Extra-domain B

FN:

Fibronectin

FOXP3:

Forkhead box P3

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

HIV:

Human immunodeficiency virus

HSV:

Herpes simplex virus

IFN-α:

Interferon alpha

IFN-β:

Interferon beta

IL2:

Interleukin-2

irRC:

Immune-related response criteria

LAK:

Lymphokine-activated killer

LDH:

Lactate dehydrogenase

MIU:

Million of international units

mOS:

Median overall survival

NED:

No evidence of disease

NK:

Natural killer

ORR:

Objective response rate

PBMC:

Peripheral blood mononuclear cells

PD:

Progressive disease

PR:

Partial response

RECIST:

Response criteria in solid tumors

SD:

Stable disease

TNF-α:

Tumor necrosis factor alpha

Tregs:

Regulatory T cells

WHO:

World Health Organization

References

  1. Testori A, Faries MB, Thompson JF, Pennacchioli E, Deroose JP, van Geel AN, Verhoef C, Verrecchia F, Soteldo J (2011) Local and intralesional therapy of in-transit melanoma metastases. J Surg Oncol 104(4):391–396. doi:10.1002/jso.22029

    Article  PubMed  Google Scholar 

  2. Si Z, Hersey P, Coates AS (1996) Clinical responses and lymphoid infiltrates in metastatic melanoma following treatment with intralesional GM-CSF. Melanoma Res 6(3):247–255

    Article  CAS  PubMed  Google Scholar 

  3. von Wussow P, Block B, Hartmann F, Deicher H (1988) Intralesional interferon-alpha therapy in advanced malignant melanoma. Cancer 61(6):1071–1074

    Article  Google Scholar 

  4. Kubo H, Ashida A, Matsumoto K, Kageshita T, Yamamoto A, Saida T (2008) Interferon-beta therapy for malignant melanoma: the dose is crucial for inhibition of proliferation and induction of apoptosis of melanoma cells. Arch Dermatol Res 300(6):297–301. doi:10.1007/s00403-008-0841-6

    Article  CAS  PubMed  Google Scholar 

  5. Gutwald JG, Groth W, Mahrle G (1994) Peritumoral injections of interleukin 2 induce tumour regression in metastatic malignant melanoma. Br J Dermatol 130(4):541–542

    Article  CAS  PubMed  Google Scholar 

  6. Radny P, Caroli UM, Bauer J, Paul T, Schlegel C, Eigentler TK, Weide B, Schwarz M, Garbe C (2003) Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. Br J Cancer 89(9):1620–1626. doi:10.1038/sj.bjc.6601320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Weide B, Derhovanessian E, Pflugfelder A, Eigentler TK, Radny P, Zelba H, Pfohler C, Pawelec G, Garbe C (2010) High response rate after intratumoral treatment with interleukin-2: results from a phase 2 study in 51 patients with metastasized melanoma. Cancer 116(17):4139–4146. doi:10.1002/cncr.25156

    Article  CAS  PubMed  Google Scholar 

  8. Boyd KU, Wehrli BM, Temple CL (2011) Intra-lesional interleukin-2 for the treatment of in-transit melanoma. J Surg Oncol 104(7):711–717. doi:10.1002/jso.21968

    Article  CAS  PubMed  Google Scholar 

  9. Dehesa LA, Vilar-Alejo J, Valeron-Almazan P, Carretero G (2009) Experience in the treatment of cutaneous in-transit melanoma metastases and satellitosis with intralesional interleukin-2. Actas Dermosifiliogr 100(7):571–585

    Article  CAS  PubMed  Google Scholar 

  10. Weide B, Eigentler TK, Pflugfelder A et al (2011) Survival after intratumoral interleukin-2 treatment of 72 melanoma patients and response upon the first chemotherapy during follow-up. Cancer Immunol Immunother 60(4):487–493. doi:10.1007/s00262-010-0957-3

    Article  CAS  PubMed  Google Scholar 

  11. Weide B, Eigentler TK, Pflugfelder A et al (2014) Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses. Cancer Immunol Res 2(7):668–678. doi:10.1158/2326-6066.CIR-13-0206

    Article  CAS  PubMed  Google Scholar 

  12. Pasche N, Neri D (2012) Immunocytokines: a novel class of potent armed antibodies. Drug Discov Today 17(11–12):583–590. doi:10.1016/j.drudis.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  13. Carnemolla B, Borsi L, Balza E et al (2002) Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99(5):1659–1665. doi:10.1182/blood.V99.5.1659

    Article  PubMed  Google Scholar 

  14. Pretto F, Elia G, Castioni N, Neri D (2014) Preclinical evaluation of IL2-based immunocytokines supports their use in combination with dacarbazine, paclitaxel and TNF-based immunotherapy. Cancer Immunol Immunother 63(9):901–910. doi:10.1007/s00262-014-1562-7

    Article  CAS  PubMed  Google Scholar 

  15. Schwager K, Hemmerle T, Aebischer D, Neri D (2013) The immunocytokine L19-IL2 eradicates cancer when used in combination with CTLA-4 blockade or with L19-TNF. J Invest Dermatol 133(3):751–758. doi:10.1038/jid.2012.376

    Article  CAS  PubMed  Google Scholar 

  16. Roberts NJ, Zhou S, Diaz LA Jr, Holdhoff M (2011) Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget 2(10):739–751

    PubMed Central  PubMed  Google Scholar 

  17. Eigentler TK, Weide B, de Braud F et al (2011) A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma. Clin Cancer Res 17(24):7732–7742. doi:10.1158/1078-0432.CCR-11-1203

    Article  CAS  PubMed  Google Scholar 

  18. Papadia F, Basso V, Patuzzo R et al (2013) Isolated limb perfusion with the tumor-targeting human monoclonal antibody-cytokine fusion protein L19-TNF plus melphalan and mild hyperthermia in patients with locally advanced extremity melanoma. J Surg Oncol 107(2):173–179. doi:10.1002/jso.23168

    Article  CAS  PubMed  Google Scholar 

  19. Melero I, Grimaldi AM, Perez-Gracia JL, Ascierto PA (2013) Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clin Cancer Res 19(5):997–1008. doi:10.1158/1078-0432.CCR-12-2214

    Article  CAS  PubMed  Google Scholar 

  20. Temple-Oberle CF, Byers BA, Hurdle V, Fyfe A, McKinnon JG (2014) Intra-lesional interleukin-2 therapy for in transit melanoma. J Surg Oncol 109(4):327–331. doi:10.1002/jso.23556

    Article  CAS  PubMed  Google Scholar 

  21. Hassan S, Petrella T, Zhang T et al (2014) Pathologic complete response to intralesional interleukin-2 therapy associated with improved survival in melanoma patients with in-transit disease. Ann Surg Oncol. doi:10.1245/s10434-014-4199-z

    Google Scholar 

  22. Thompson JF, Hersey P, Wachter E (2008) Chemoablation of metastatic melanoma using intralesional Rose Bengal. Melanoma Res 18(6):405–411. doi:10.1097/CMR.0b013e32831328c7

    Article  PubMed  Google Scholar 

  23. Kaufman HL, Kim DW, DeRaffele G, Mitcham J, Coffin RS, Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17(3):718–730. doi:10.1245/s10434-009-0809-6

    Article  PubMed  Google Scholar 

  24. Lotze MT (1995) Biologic therapy with interleukin-2: preclinical studies. In: DeVita VTJ, Hellman S, Rosenberg SA (eds) Biologic therapy of cancer. Lippincott, Philadelphia, pp 207–233

    Google Scholar 

  25. van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11(4):397–408. doi:10.1634/theoncologist.11-4-397

    Article  PubMed  Google Scholar 

  26. Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107(6):2409–2414. doi:10.1182/blood-2005-06-2399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Berntsen A, Brimnes MK, thor Straten P, Svane IM (2010) Increase of circulating CD4+ CD25highFoxp3+ regulatory T cells in patients with metastatic renal cell carcinoma during treatment with dendritic cell vaccination and low-dose interleukin-2. J Immunother 33(4):425–434. doi:10.1097/CJI.0b013e3181cd870f

    Article  CAS  PubMed  Google Scholar 

  28. Martens A, Zelba H, Garbe C, Pawelec G, Weide B (2014) Monocytic myeloid-derived suppressor cells in advanced melanoma patients: indirect impact on prognosis through inhibition of tumor-specific T-cell responses? Oncoimmunology 3(1):e27845. doi:10.4161/onci.27845

    Article  PubMed Central  PubMed  Google Scholar 

  29. Weide B, Martens A, Zelba H et al (2014) Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A-specific T cells. Clin Cancer Res 20(6):1601–1609. doi:10.1158/1078-0432.CCR-13-2508

    Article  CAS  PubMed  Google Scholar 

  30. Fadaki N, Cardona-Huerta S, Martineau L et al (2012) Inoperable bulky melanoma responds to neoadjuvant therapy with vemurafenib. BMJ Case Rep 2012. doi:10.1136/bcr-2012-007034

    Google Scholar 

  31. Koers K, Francken AB, Haanen JB, Woerdeman LA, van der Hage JA (2013) Vemurafenib as neoadjuvant treatment for unresectable regional metastatic melanoma. J Clin Oncol 31(16):e251–e253. doi:10.1200/JCO.2012.45.3845

    Article  CAS  PubMed  Google Scholar 

  32. Kolar GR, Miller-Thomas MM, Schmidt RE, Simpson JR, Rich KM, Linette GP (2013) Neoadjuvant treatment of a solitary melanoma brain metastasis with vemurafenib. J Clin Oncol 31(3):e40–e43. doi:10.1200/JCO.2012.43.7061

    Article  PubMed  Google Scholar 

  33. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247. doi:10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  34. Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420. doi:10.1158/1078-0432.CCR-09-1624

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support from the EU Seventh Framework Programme “PRIAT” (Profiling Responders In Antibody Therapies), Grant agreement no: 305309, is gratefully acknowledged.

Conflict of interests

D. Neri is co-founder and shareholder of Philogen. R. Danielli, M. Santinami and M. Maio received compensation from the Philogen group for advisory services, patient treatment and/or as coordinating investigators of this trial. The other authors declare no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Santinami.

Additional information

Riccardo Danielli, Roberto Patuzzo, Michele Maio and Mario Santinami contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danielli, R., Patuzzo, R., Di Giacomo, A.M. et al. Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: results of a phase II study. Cancer Immunol Immunother 64, 999–1009 (2015). https://doi.org/10.1007/s00262-015-1704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1704-6

Keywords

Navigation