Skip to main content

Advertisement

Log in

Anti-GITR therapy promotes immunity against malignant glioma in a murine model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Regulatory T cells (Tregs) are potently immunosuppressive cells that accumulate within the glioma microenvironment. The reduction in their function and/or trafficking has been previously shown to enhance survival in preclinical models of glioma. Glucocorticoid-induced TNFR-related protein (GITR) is a tumor necrosis factor superfamily receptor enriched on Tregs that has shown promise as a target for immunotherapy. An agonistic antibody against GITR has been demonstrated to inhibit Tregs in a number of models and has only been recently addressed in glioma. In this study, we examined the modality of the antibody function at the tumor site as opposed to the periphery as the blood–brain barrier prevents efficient antibody delivery to brain tumors. Mice harboring established GL261 tumors were treated with anti-GITR monotherapy and were shown to have a significant increase in overall survival (p < 0.01) when antibodies were injected directly into the glioma core, whereas peripheral antibody treatment only had a modest effect. Peripheral treatment resulted in a significant decrease in granzyme B (GrB) expression by Tregs, whereas intratumoral treatment resulted in both a decrease in GrB expression by Tregs and their selective depletion, which was largely mediated by FcγR-mediated destruction. We also discovered that anti-GITR treatment results in the enhanced survival and functionality of dendritic cells (DCs)—a previously unreported effect of this immunotherapy. In effect, this study demonstrates that the targeting of GITR is a feasible and noteworthy treatment option for glioma, but is largely dependent on the anatomical location in which the antibodies are delivered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

BMDC:

Bone marrow dendritic cell

CNS:

Central nervous system

FcγR:

Fc gamma receptor

GBM:

Glioblastoma multiforme

GITR:

Glucocorticoid-induced TNFR-related protein

GrB:

Granzyme B

Prf1:

Perforin 1

TME:

Tumor microenvironment

Treg:

Regulatory T cell

References

  1. Heimberger AB, Sampson JH (2011) Immunotherapy coming of age: What will it take to make it standard of care for glioblastoma? Neuro-Oncology 13(1):3–13. doi:10.1093/neuonc/noq169

    Article  PubMed  Google Scholar 

  2. Vom Berg J, Vrohlings M, Haller S, Haimovici A, Kulig P, Sledzinska A, Weller M, Becher B (2013) Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. J Exp Med 210(13):2803–2811. doi:10.1084/jem.20130678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aldrich WA, Ren C, White AF, Zhou SZ, Kumar S, Jenkins CB, Shaw DR, Strong TV, Triozzi PL, Ponnazhagan S (2006) Enhanced transduction of mouse bone marrow-derived dendritic cells by repetitive infection with self-complementary adeno-associated virus 6 combined with immunostimulatory ligands. Gene Ther 13(1):29–39. doi:10.1038/sj.gt.3302601

    Article  CAS  PubMed  Google Scholar 

  4. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, Pradilla G, Ford E, Wong J, Hammers HJ, Mathios D, Tyler B, Brem H, Tran PT, Pardoll D, Drake CG, Lim M (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349. doi:10.1016/j.ijrobp.2012.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim C, Tobias AL, Cheng Y, Kim J, Zhang L, Qiao J, Han Y, Lesniak MS (2014) Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4 and PD-L1 in mice with brain tumors. Clin Cancer Res 20(20):5290–5301. doi:10.1158/1078-0432.CCR-14-0514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, Tobias AL, Han Y, Lesniak MS (2012) IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res 18(22):6110–6121. doi:10.1158/1078-0432.CCR-12-2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vega EA, Graner MW, Sampson JH (2008) Combating immunosuppression in glioma. Future Oncol 4(3):433–442. doi:10.2217/14796694.4.3.433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138(2):105–115. doi:10.1111/imm.12036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182(8):4499–4506. doi:10.4049/jimmunol.0802740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen QY, Gindin M, Gubin MM, van der Windt GJW, Tonc E, Schreiber RD, Pearce EJ, Pearce EL (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241. doi:10.1016/j.cell.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maes W, Verschuere T, Van Hoylandt A, Boon L, Van Gool S (2013) Depletion of regulatory T cells in a mouse experimental glioma model through anti-CD25 treatment results in the infiltration of non-immunosuppressive myeloid cells in the brain. Clin Dev Immunol 2013:952469. doi:10.1155/2013/952469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wainwright DA, Dey M, Chang A, Lesniak MS (2013) Targeting tregs in malignant brain cancer: overcoming IDO. Front Immunol 4:116. doi:10.3389/fimmu.2013.00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB (2008) Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 57(1):123–131. doi:10.1007/s00262-007-0336-x

    Article  CAS  PubMed  Google Scholar 

  14. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. doi:10.1126/science.1079490

    Article  CAS  PubMed  Google Scholar 

  15. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489. doi:10.1038/nature10673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wainwright DA, Sengupta S, Han Y, Lesniak MS (2011) Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro Oncol 13(12):1308–1323. doi:10.1093/neuonc/nor134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Prins RM, Graf MR, Merchant RE, Black KL, Wheeler CJ (2003) Thymic function and output of recent thymic emigrant T cells during intracranial glioma progression. J Neurooncol 64(1–2):45–54. doi:10.1007/BF02700019

    PubMed  Google Scholar 

  18. Dey M, Chang AL, Wainwright DA, Ahmed AU, Han Y, Balyasnikova IV, Lesniak MS (2014) Heme oxygenase-1 protects regulatory T cells from hypoxia-induced cellular stress in an experimental mouse brain tumor model. J Neuroimmunol 266(1–2):33–42. doi:10.1016/j.jneuroim.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  19. El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105(3):430–437. doi:10.3171/jns.2006.105.3.430

    Article  PubMed  Google Scholar 

  20. Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, Cui XY, Cummings TJ, Bigner DD, Gilboa E, Sampson JH (2006) Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 12(14):4294–4305. doi:10.1158/1078-0432.Ccr-06-0053

    Article  CAS  PubMed  Google Scholar 

  21. Whiteside TL (2014) Regulatory T cell subsets in human cancer: Are they regulating for or against tumor progression? Cancer Immunol Immun 63(1):67–72. doi:10.1007/s00262-013-1490-y

    Article  CAS  Google Scholar 

  22. Heimberger AB, Kong LY, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Wei J, Qiao W, Schmittling RJ, Archer GE, Sampson JH, Hiraoka N, Priebe W, Fuller GN, Sawaya R (2009) The role of Tregs in human glioma patients and their inhibition with a novel STAT-3 inhibitor. Clin Neurosurg 56:98–106. doi:10.1227/01.neu.0000333524.54656.42

    PubMed  Google Scholar 

  23. Sonabend AM, Rolle CE, Lesniak MS (2008) The role of regulatory T cells in malignant glioma. Anticancer Res 28(2B):1143–1150

    PubMed  Google Scholar 

  24. El Andaloussi A, Lesniak MS (2007) CD4(+)CD25(+)FoxP3(+) T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neuro-Oncol 83(2):145–152. doi:10.1007/s11060-006-9314-y

    Article  CAS  Google Scholar 

  25. Thomas AA, Fisher JL, Rahme GJ, Hampton TH, Baron U, Olek S, Schwachula T, Rhodes CH, Gui J, Tafe LJ, Tsongalis GJ, Lefferts JA, Wishart H, Kleen J, Miller M, Whipple CA, de Abreu FB, Ernstoff MS, Fadul CE (2015) Regulatory T cells are not a strong predictor of survival for patients with glioblastoma. Neuro Oncol 17(6):801–809. doi:10.1093/neuonc/nou363

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sayour EJ, McLendon P, McLendon R, De Leon G, Reynolds R, Kresak J, Sampson JH, Mitchell DA (2015) Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immun 64(4):419–427. doi:10.1007/s00262-014-1651-7

    Article  CAS  Google Scholar 

  27. Yue Q, Zhang X, Ye HX, Wang Y, Du ZG, Yao Y, Mao Y (2014) The prognostic value of Foxp3+ tumor-infiltrating lymphocytes in patients with glioblastoma. J Neuro-Oncol 116(2):251–259. doi:10.1007/s11060-013-1314-0

    Article  CAS  Google Scholar 

  28. Jacobs JFM, Idema AJ, Bol KF, Grotenhuis JA, de Vries IJM, Wesseling P, Adema GJ (2010) Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol 225(1–2):195–199. doi:10.1016/j.jneuroim.2010.05.020

    Article  CAS  PubMed  Google Scholar 

  29. Smyth MJ, Ngiow SF, Teng MWL (2014) Targeting regulatory T cells in tumor immunotherapy. Immunol Cell Biol 92(6):473–474. doi:10.1038/icb.2014.33

    Article  CAS  PubMed  Google Scholar 

  30. Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110(9):3192–3201. doi:10.1182/blood-2007-06-094615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T, Shimizu J, Nomura T, Chiba T, Sakaguchi S (2005) Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med 202(7):885–891. doi:10.1084/jem.20050940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tone Y, Kidani Y, Ogawa C, Yamamoto K, Tsuda M, Peter C, Waldmann H, Tone M (2014) Gene expression in the gitr locus is regulated by NF-kappa B and Foxp3 through an enhancer. J Immunol 192(8):3915–3924. doi:10.4049/jimmunol.1302174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE, Cummings T, Allison JP, Bigner DD, Sampson JH (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4(+) T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167. doi:10.1158/1078-0432.Ccr-06-2070

    Article  CAS  PubMed  Google Scholar 

  35. Naidoo J, Page DB, Wolchok JD (2014) Immune modulation for cancer therapy. Br J Cancer 111(12):2214–2219. doi:10.1038/bjc.2014.348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, Nocentini G, Ayroldi E, Riccardi C (2004) GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 34(3):613–622. doi:10.1002/eji.200324804

    Article  CAS  PubMed  Google Scholar 

  37. Lahey TP, Loisel SD, Wieland-Alter W (2007) Glucocorticoid-induced tumor necrosis factor receptor family-related protein triggering enhances HIV-specific CD4(+) T cell cytokine secretion and protects HIV-specific CD4(+) T cells from apoptosis. J Infect Dis 196(1):43–49. doi:10.1086/518613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schaer DA, Budhu S, Liu CL, Bryson C, Malandro N, Cohen A, Zhong H, Yang X, Houghton AN, Merghoub T, Wolchok JD (2013) GITR pathway activation abrogates tumor immune suppression through loss of regulatory T-cell lineage stability. Cancer Immunol Res 1(5):320–331. doi:10.1158/2326-6066.Cir-13-0086

    Article  CAS  PubMed  Google Scholar 

  39. Patel MA, Kim JE, Theodros D, Tam A, Velarde E, Kochel CM, Francica B, Nirschl TR, Ghasemzadeh A, Mathios D, Harris-Bookman S, Jackson CC, Jackson C, Ye X, Tran PT, Tyler B, Coric V, Selby M, Brem H, Drake CG, Pardoll DM, Lim M (2016) Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer 4:28. doi:10.1186/s40425-016-0132-2

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lampson LA (2011) Monoclonal antibodies in neuro-oncology: getting past the blood–brain barrier. MAbs 3(2):153–160. doi:10.4161/mabs.3.2.14239

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tario JD, Humphrey K, Bantly AD, Muirhead KA, Moore JS, Wallace PK (2012) Optimized staining and proliferation modeling methods for cell division monitoring using cell tracking dyes. J Vis Exp 70:e4287. doi:10.3791/4287

    Google Scholar 

  42. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238. doi:10.1038/nature04753

    Article  CAS  PubMed  Google Scholar 

  43. Choi BD, Gedeon PC, Sanchez-Perez L, Bigner DD, Sampson JH (2013) Regulatory T cells are redirected to kill glioblastoma by an EGFRvIII-targeted bispecific antibody. Oncoimmunology 2(12):e26757. doi:10.4161/onci.26757

    Article  Google Scholar 

  44. Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL (2010) Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 5(7):e11469. doi:10.1371/journal.pone.0011469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ (2005) Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 174(4):1783–1786. doi:10.4049/jimmunol.174.4.1783

    Article  CAS  PubMed  Google Scholar 

  46. Ji HB, Liao G, Faubion WA, Abadia-Molina AC, Cozzo C, Laroux FS, Caton A, Terhorst C (2004) Cutting edge: the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J Immunol 172(10):5823–5827. doi:10.4049/jimmunol.172.10.5823

    Article  CAS  PubMed  Google Scholar 

  47. Bulliard Y, Jolicoeur R, Windman M, Rue SM, Ettenberg S, Knee DA, Wilson NS, Dranoff G, Brogdon JL (2013) Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med 210(9):1685–1693. doi:10.1084/jem.20130573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vecchiarelli A, Pericolini E, Gabrielli E, Agostini M, Bistoni F, Nocentini G, Cenci E, Riccardi C (2009) The GITRL-GITR system alters TLR-4 expression on DC during fungal infection. Cell Immunol 257(1–2):13–22. doi:10.1016/j.cellimm.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  49. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble-antigen by cultured human dendritic cells is maintained by granulocyte-macrophage colony-stimulating factor plus interleukin-4 and down-regulated by tumor-necrosis-factor-alpha. J Exp Med 179(4):1109–1118. doi:10.1084/jem.179.4.1109

    Article  CAS  PubMed  Google Scholar 

  50. Lu L, Xu X, Zhang B, Zhang R, Ji H, Wang X (2014) Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J Transl Med 12:36. doi:10.1186/1479-5876-12-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207(10):2187–2194. doi:10.1084/jem.20100643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang L, Guo G, Niu XY, Liu J (2015) Dendritic cell-based immunotherapy treatment for glioblastoma multiforme. Biomed Res Int 2015:717530. doi:10.1155/2015/717530

    PubMed  PubMed Central  Google Scholar 

  53. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T (2009) Regulatory T cells: How do they suppress immune responses? Int Immunol 21(10):1105–1111. doi:10.1093/intimm/dxp095

    Article  CAS  PubMed  Google Scholar 

  54. Esparza EM, Arch RH (2005) Glucocorticoid-induced TNF receptor functions as a costimulatory receptor that promotes survival in early phases of T cell activation. J Immunol 174(12):7869–7874. doi:10.4049/jimmunol.174.12.7869

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Atique Ahmed and Joshua Robert Kane for critical review of the manuscript. The work was supported by NIH National Cancer Institute R01CA122930, R01 NS093903 Grants to Maciej S. Lesniak and NIH/National Cancer Institute T32 CA080621-12 to Jason Miska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej S. Lesniak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Jason Miska and Aida Rashidi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miska, J., Rashidi, A., Chang, A.L. et al. Anti-GITR therapy promotes immunity against malignant glioma in a murine model. Cancer Immunol Immunother 65, 1555–1567 (2016). https://doi.org/10.1007/s00262-016-1912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1912-8

Keywords

Navigation