Skip to main content

Advertisement

Log in

Expression of PD-1 (CD279) and FoxP3 in diffuse large B-cell lymphoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The role of the microenvironment in high-grade lymphoma is not well defined. In this report, we employ immunohistochemistry to characterise programmed death-1 (PD-1/CD279) and FoxP3 expression in 70 cases of diffuse large B-cell lymphoma (DLBCL). PD-1 is a surface marker characteristic of follicular helper T-cells whilst FoxP3 is characteristic of Tregs. We demonstrate variable infiltration with CD4+ T-cells (<10 to >50 % of all lymph node cells) and PD-1hi cells (0.1 to 1.5 % of all cells). CD4+ T-cells can be distributed in clusters or more diffusely and PD-1hi cells, but not FoxP3+ cells, are found in rosettes around lymphoma cells. Cases with high CD4+ T-cell numbers tended to have higher numbers of both PD-1hi and FoxP3+ cells. Cases with total CD4+ T-cell, PD-1hi and FoxP3+ numbers above the median associate with better clinical outcome. Overall, we demonstrate that infiltration by CD4+ T-cells, including both FoxP3+ and PD-1hi subsets, correlates with prognosis in DLBCL. In distinction to previous reported series, patients (91 %) were treated with rituximab-containing regimens, suggesting that the effects of CD4+ T-cell infiltration are maintained in the rituximab era. This work suggests that determinants of total CD4+ T-cell infiltration, either molecular characteristics of the lymphoma or the patients’ immune system, and not individual T-cell subsets, correlate with clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shinoda K, Tokoyoda K, Hanazawa A et al (2012) Type II membrane protein CD69 regulates the formation of resting T-helper memory. Proc Natl Acad Sci U S A 109:7409–7414. doi:10.1073/pnas.1118539109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Alizadeh AA, Eisen MB et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511. doi:10.1038/35000501

    Article  CAS  PubMed  Google Scholar 

  3. Shipp MA, Ross KN, Tamayo P et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8:68–74. doi:10.1038/nm0102-68

    Article  CAS  PubMed  Google Scholar 

  4. Martín P, Gómez M, Lamana A et al (2010) CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation. Mol Cell Biol 30:4877–4889. doi:10.1128/MCB.00456-10

    Article  PubMed Central  PubMed  Google Scholar 

  5. Rosenwald A, Wright G, Chan WC et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large B-cell lymphoma. N Engl J Med 346:1937–1947. doi:10.1056/NEJMoa032520

    Article  PubMed  Google Scholar 

  6. Lenz G, Wright GW, Emre NCT et al (2008) Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105:13520–13525. doi:10.1073/pnas.0804295105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Alizadeh AA, Gentles AJ, Alencar AJ et al (2011) Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood 118:1350–1358. doi:10.1182/blood-2011-03-345272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ramiscal RR, Vinuesa CG (2013) T-cell subsets in the germinal center. Immunol Rev 252:146–155. doi:10.1111/imr.12031

    Article  PubMed  Google Scholar 

  9. Shao H, Chung J, Balaj L et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840. doi:10.1038/nm.2994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173. doi:10.1146/annurev.iy.07.040189.001045

    Article  CAS  PubMed  Google Scholar 

  11. Schmitt N, Morita R, Bourdery L et al (2010) Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31:158–169. doi:10.1016/j.immuni.2009.04.016

    Article  Google Scholar 

  12. Nurieva RI, Chung Y, Hwang D et al (2008) Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29:138–149. doi:10.1016/j.immuni.2008.05.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Johnston RJ, Poholek AC, Ditoro D et al (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–1010. doi:10.1126/science.1175870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nurieva RI, Chung Y, Martinez GJ et al (2009) Bcl6 mediates the development of T follicular helper cells. Science 325:1001–1005. doi:10.1126/science.1176676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Yu D, Rao S, Tsai LM et al (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–468. doi:10.1016/j.immuni.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  16. Mittal S, Marshall NA, Duncan L et al (2008) Local and systemic induction of CD4 + CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood 111:5359–5370. doi:10.1182/blood-2007-08-105395

    Article  CAS  PubMed  Google Scholar 

  17. Pangault C, Amé-Thomas P, Ruminy P et al (2010) Follicular lymphoma cell niche: identification of a preeminent IL-4-dependent TFH–B cell axis. Leukemia 1–10. doi: 10.1038/leu.2010.223

  18. Lee AM, Clear AJ, Calaminici M et al (2006) Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. J Clin Oncol 24:5052–5059. doi:10.1200/JCO.2006.06.4642

    Article  CAS  PubMed  Google Scholar 

  19. Hasselblom S, Sigurdadottir M, Hansson U et al (2007) The number of tumour-infiltrating TIA-1+ cytotoxic T cells but not FOXP3+ regulatory T cells predicts outcome in diffuse large B-cell lymphoma. Br J Haematol 137:364–373. doi:10.1111/j.1365-2141.2007.06593.x

    Article  CAS  PubMed  Google Scholar 

  20. Lee NR, Song EK, Jang KY et al (2008) Prognostic impact of tumor infiltrating FoxP3 positive regulatory T cells in diffuse large B-cell lymphoma at diagnosis. Leuk Lymphoma 49:247–256

    Article  CAS  PubMed  Google Scholar 

  21. Tzankov A, Meier C, Hirschmann P et al (2008) Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica 93:193–200. doi:10.3324/haematol.11702

    Article  CAS  PubMed  Google Scholar 

  22. Ansell SM, Stenson M, Habermann TM et al (2001) CD4+ T-cell immune response to large B-cell non-Hodgkin's lymphoma predicts patient outcome. J Clin Oncol 19:720–726

    CAS  PubMed  Google Scholar 

  23. Lippman SM, Spier CM, Miller TP et al (1990) Tumor-infiltrating T-lymphocytes in B-cell diffuse large cell lymphoma related to disease course. Mod Pathol 3:361–367

    CAS  PubMed  Google Scholar 

  24. Abramoff M, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 1–7

  25. Kao C, Oestreich KJ, Paley MA et al (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12:663–671. doi:10.1038/ni.2046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Youngblood B, Oestreich KJ, Ha S-J et al (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35:400–412. doi:10.1016/j.immuni.2011.06.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lee SK, Rigby RJ, Zotos D et al (2011) B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J Exp Med 208:1377–1388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. McHeyzer-Williams LJ, Pelletier N, Mark L et al (2009) Follicular helper T cells as cognate regulators of B cell immunity. Curr Opin Immunol 21:266–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ (2006) Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 30:802–810. doi:10.1097/01.pas.0000209855.28282.ce

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wang C, Hillsamer P, Kim CH (2011) Phenotype, effector function, and tissue localization of PD-1-expressing human follicular helper T cell subsets. BMC Immunol 12:53. doi:10.1186/1471-2172-12-53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rizzardi AE, Johnson AT, Vogel RI et al (2012) Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol 7:42. doi:10.1186/1746-1596-7-42

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ahearne MJ, Willimott S, Piñon L et al (2013) Enhancement of CD154/IL4 proliferation by the T follicular helper (Tfh) cytokine, IL21 and increased numbers of circulating cells resembling Tfh cells in chronic lymphocytic leukaemia. Br J Haematol 162:360–370. doi:10.1111/bjh.12401

    Article  CAS  PubMed  Google Scholar 

  33. Rimm DL, Nielsen TO, Jewell SD et al (2011) Cancer and Leukemia Group B Pathology Committee guidelines for tissue microarray construction representing multicenter prospective clinical trial tissues. J Clin Oncol 29:2282–2290. doi:10.1200/JCO.2010.33.2023

    Article  PubMed Central  PubMed  Google Scholar 

  34. Carreras J, Lopez-Guillermo A, Fox BC et al (2006) High numbers of tumor-infiltrating FoxP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108:2957–2964

    Article  CAS  PubMed  Google Scholar 

  35. Carreras J, Lopez-Guillermo A, Roncador G et al (2009) High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytesare associated with improved overall survival in follicular lymphoma. J Clin Oncol 27:1470–1476

    Article  PubMed  Google Scholar 

  36. Nam-Cha SH, Roncador G, Sanchez-Verde L et al (2008) PD-1, a follicular T-cell marker useful for recognizing nodular lymphocyte-predominant Hodgkin lymphoma. Am J Surg Pathol 32:1252–1257. doi:10.1097/PAS.0b013e318165b0d6

    Article  PubMed  Google Scholar 

  37. Chung Y, Tanaka S, Chu F et al (2011) Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med 17:983–988. doi:10.1038/nm.2426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Turk MJ, Guevara-Patiño JA, Rizzuto GA et al (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782. doi:10.1084/jem.20041130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562. doi:10.1146/annurev.immunol.21.120601.141122

    Article  CAS  PubMed  Google Scholar 

  40. Lenz G, Wright G, Dave SS et al (2008) Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359:2313–2323. doi:10.1056/NEJMoa0802885

    Article  CAS  PubMed  Google Scholar 

  41. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282. doi:10.1182/blood-2003-05-1545

    Article  CAS  PubMed  Google Scholar 

  42. Ott G, Ziepert M, Klapper W et al (2010) Immunoblastic morphology but not the immunohistochemical GCB/nonGCB classifier predicts outcome in diffuse large B-cell lymphoma in the RICOVER-60 trial of the DSHNHL. Blood 116:4916–4925. doi:10.1182/blood-2010-03-276766

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in SDW’s laboratory is supported by the Kay Kendall Leukaemia Fund and the Leicester Haematology Research Fund. MJA was supported by an unrestricted grant from Roche. We also wish to thank the Database Manager, Judy Maynard-Mills, for her assistance with this project. Part of this work was presented as a poster at the American Society of Hematology, San Diego, CA, USA, 2011.

Conflict of interest

We declare that the authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon D. Wagner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(JPG 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahearne, M.J., Bhuller, K., Hew, R. et al. Expression of PD-1 (CD279) and FoxP3 in diffuse large B-cell lymphoma. Virchows Arch 465, 351–358 (2014). https://doi.org/10.1007/s00428-014-1615-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-014-1615-5

Keywords

Navigation