Skip to main content

Advertisement

Log in

Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Activation of hepatic stellate cells (HSCs) is the dominant event in liver fibrosis. The early events in the organization of HSC activation have been termed initiation. Initiation encompasses rapid changes in gene expression and phenotype that render the cells responsive to cytokines and other local stimuli. Cellular responses following initiation are termed perpetuation, which encompasses those cellular events that amplify the activated phenotype through enhanced growth factor expression and responsiveness. Multiple cells and cytokines play a part in the regulation of HSC activation. HSC activation consists of discrete phenotype responses, mainly proliferation, contractility, fibrogenesis, matrix degradation, chemotaxis and retinoid loss. Currently, antifibrotic therapeutic strategies include inhibition of HSC proliferation or stimulation of HSC apoptosis, downregulation of collagen production or promotion of its degradation, administration of cytokines, and infusion of mesenchymal stem cells. In this review, we summarize the latest advances in our understanding of the mechanisms of HSC activation and possible antifibrotic therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 2006;130:1807–1821.

    Article  PubMed  Google Scholar 

  2. Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets. Dig Liver Dis 2004;36:562–563.

    Article  Google Scholar 

  3. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000;275(4):2247–2250.

    Article  PubMed  CAS  Google Scholar 

  4. Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 2001;161:1–151.

    Google Scholar 

  5. Gressner AM, Lotfi S, Gressner G, Haltner E, Kropf J. Synergism between hepatocytes and Kupffer cells in the activation of fat storing cells (perisinusoidal lipocytes). J Hepatol 1993;19:117–132.

    Article  PubMed  CAS  Google Scholar 

  6. Matsuoka M, Tsukamoto H. Stimulation of hepatic lipocyte collagen production by Kupffer cell-derived transforming growth factor beta: implication for a pathogenetic role in alcoholic liver fibrogenesis. Hepatology 1990;11:599–605.

    Article  PubMed  CAS  Google Scholar 

  7. Winwood PJ, Schuppan D, Iredale JP, Kawser CA, Docherty AJ, Arthur MJ. Kupffer cell-derived 95 kd type IV collagenase/gelatinase B: characterization and expression in cultured cells. Hepatology 1995;22:304–315.

    PubMed  CAS  Google Scholar 

  8. Nieto N, Friedman SL, Cederbaum AI. Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species. Hepatology 2002;35:62–73.

    Article  PubMed  CAS  Google Scholar 

  9. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 2003;83:655–663.

    PubMed  CAS  Google Scholar 

  10. Shi Z, Wakil AE, Rockey DC. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci USA 1997;94:10663–10668.

    Article  PubMed  CAS  Google Scholar 

  11. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004;4:583–594.

    Article  PubMed  CAS  Google Scholar 

  12. Sugimoto R, Enjoji M, Nakamuta M, Ohta S, Kohjima M, Fukushima M, et al. Effect of IL-4 and IL-13 on collagen production in cultured LI90 human hepatic stellate cells. Liver Int 2005;25:420–428.

    Article  PubMed  CAS  Google Scholar 

  13. Casini A, Ceni E, Salzano R, Biondi P, Parola M, Galli A, et al. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology 1997;25:361–367.

    Article  PubMed  CAS  Google Scholar 

  14. Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells Hepatology 2003;37:1043–1055.

    Article  PubMed  CAS  Google Scholar 

  15. Szabo G, Dolganiuc A, Mandrekar P. Pattern recognition receptors: a contemporary view on liver diseases. Hepatology 2006;44:287–298.

    Article  PubMed  CAS  Google Scholar 

  16. Bieker JJ. Kruppel-like factors: three fingers in many pies. J Biol Chem 2001;276:34355–34358.

    Article  PubMed  CAS  Google Scholar 

  17. Narla G, Difeo A, Reeves HL, Schaid DJ, Hirshfeld J, Hod E, et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 2005;65:1213–1222.

    Article  PubMed  CAS  Google Scholar 

  18. Narla G, DiFeo A, Yao S, Banno A, Hod E, Reeves HL, et al. Targeted inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth and spread. Cancer Res 2005;65:5761–5768.

    Article  PubMed  CAS  Google Scholar 

  19. Rippe RA, Schrum LW, Stefanovic B, Solis-Herruzo JA, Brenner DA. NF-κB inhibits expression of the α1(I) collagen gene. DNA Cell Biol 19 1999;18:751–761

    Article  CAS  Google Scholar 

  20. Rippe RA, Almounajed G, Brenner DA. Sp1 binding activity increases in activated Ito cells. Hepatology 1995;22:241–251.

    PubMed  CAS  Google Scholar 

  21. Chen A, Davis BH. The DNA binding protein BTEB mediates acetaldehyde-induced Jun N-terminal kinase-dependent α1(I) collagen gene expression in rat hepatic stellate cells. Mol Cell Biol 2 2000;20:2818–2826.

    Article  CAS  Google Scholar 

  22. Marra F, DeFranco R, Grappone C, Milani S, Pastacaldi S, Pinzani M, et al. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am J Pathol 1998;152:423–430.

    PubMed  CAS  Google Scholar 

  23. Marra F, Valente AJ, Pinzani M, Abboud HE. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest 1993;92:1674–1680.

    Article  PubMed  CAS  Google Scholar 

  24. Maher JJ, Lozier JS, Scott MK. Rat hepatic stellate cells produce cytokine-induced neutrophil chemoattractant in culture and in vivo. Am J Physiol 1998;275:G847–G853.

    PubMed  CAS  Google Scholar 

  25. Olaso E, Eng F, Lin C, Yancopoulous G, Friedman SL. The discoidin domain receptor 2 (DDR2) is induced during stellate cell activation, mediates cell growth and MMP2 expression, and is regulated by extracellular matrix. Hepatology 1999;30:413A.

    Google Scholar 

  26. Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH, Lin HC, et al. DDR2 receptor promotes MMP-2 mediated proliferation and invasion by hepatic stellate cells. J Clin Invest 2001;108:1369–1378.

    PubMed  CAS  Google Scholar 

  27. Ikeda K, Wang LH, Torres R, Zhao H, Olaso E, Eng FJ, et al. Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. J Biol Chem 2002;277:19206–19212.

    Article  PubMed  CAS  Google Scholar 

  28. Borkham-Kamphorst E, Stoll D, Gressner AM, Weiskirchen R. Antisense strategy against PDGF B-chain proves effective in preventing experimental liver fibrogenesis. Biochem Biophys Res Commun 2004;321:413–423.

    Article  PubMed  CAS  Google Scholar 

  29. Schnabl B, Bradham CA, Bennett BL, Manning AM, Stefanovic B, Brenner DA. TAK1/JNK and p38 have opposite effects on rat hepatic stellate cells. Hepatology 2001;34:953–963.

    Article  PubMed  CAS  Google Scholar 

  30. Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, et al. The role of FAK-PI3-K-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem 2003;278:8083–8090.

    Article  PubMed  CAS  Google Scholar 

  31. Pinzani M, Marra F. Cytokine receptors and signaling during stellate cell activation. Semin Liver Dis 2001;21:397–416.

    Article  PubMed  CAS  Google Scholar 

  32. Shao R, Yan W, Rockey DC. Regulation of endothelin-1 synthesis by endothelin-converting enzyme-1 during wound healing. J Biol Chem 1999;274:3228–3234.

    Article  PubMed  CAS  Google Scholar 

  33. Rockey D. The cellular pathogenesis of portal hypertension: stellate cell contractility, endothelin, and nitric oxide. Hepatology 1997;25:2–5.

    Article  PubMed  CAS  Google Scholar 

  34. Shi-Wen X, Chen Y, Denton CP, Eastwood M, Renzoni EA, Bou-Gharios G, et al. Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell 2004;15:2707–2719.

    Article  PubMed  Google Scholar 

  35. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2004;115:209–218.

    Google Scholar 

  36. Olaso E, Friedman SL. Molecular mechanisms of hepatic fibrogenesis. J Hepatol 1998;29:836–847.

    Article  PubMed  CAS  Google Scholar 

  37. Bachem MG, Riess U, Melchior R, Sell KM, Gressner AM. Transforming growth factors (TGF alpha and TGF beta 1) stimulate chondroitin sulfate and hyaluronate synthesis in cultured rat liver fat storing cells. FEBS Lett 1989;257:134–137.

    Article  PubMed  CAS  Google Scholar 

  38. Gressner AM. Cytokines and cellular crosstalk involved in the activation of fat-storing cells. J Hepatol 1995;22:28–36.

    Article  PubMed  CAS  Google Scholar 

  39. Bissell DM, Wang SS, Jarnagin WR, Roll FJ. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest 1995;96:447–455.

    Article  PubMed  CAS  Google Scholar 

  40. Dooley S, Streckert M, Delvoux B, Gressner AM. Expression of Smads during in vitro transdifferentiation of hepatic stellate cells to myofibroblasts. Biochem Biophys Res Commun 2001;283:554–562.

    Article  PubMed  CAS  Google Scholar 

  41. Cao Q, Mak KM, Lieber CS. DLPC decreases TGF-beta1-induced collagen mRNA by inhibiting p38 MAPK in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2002;283:G1051–G1061.

    PubMed  CAS  Google Scholar 

  42. Tsukada S, Westwick JK, Ikejima K, Sato N, Rippe RA. SMAD and p38 MAPK signaling pathways independently regulate alpha 1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells. J Biol Chem 2005;280:10055–10064.

    Article  PubMed  CAS  Google Scholar 

  43. Stefanovic B, Hellerbrand C, Holcik M, Briendl M, Aliebhaber S, Brenner DA. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells. Mol Cell Biol 1997;17:5201–5209.

    PubMed  CAS  Google Scholar 

  44. Lindquist JN, Parsons CJ, Stefanovic B, Brenner DA. Regulation of alpha 1(I) collagen messenger RNA decay by interactions with alphaCP at the 3′-untranslated region. J Biol Chem 2004;279:23822–23829.

    Article  PubMed  CAS  Google Scholar 

  45. Shek FW, Benyon RC. How can transforming growth factor beta be targeted usefully to combat liver fibrosis. Eur J Gastroenterol Hepatol 2004;16:123–126.

    Article  PubMed  CAS  Google Scholar 

  46. Bethanis SK, Theocharis SE. Leptin in the field of hepatic fibrosis: a pivotal or an incidental player? Dig Dis Sci 2006;51:1685–1696.

    Article  PubMed  CAS  Google Scholar 

  47. Niu L, Wang X, Li J, Huang Y, Yang Z, Chen F, et al. Leptin stimulates alpha 1(I) collagen expression in human hepatic stellate cells via the phosphatidylinositol 3-kinase/Akt signalling pathway. Liver Int 2007;27:1265–1272.

    PubMed  CAS  Google Scholar 

  48. Arthur MJ. Collagenases and liver fibrosis. J Hepatol 1995 22;Suppl 2:43–48.

    PubMed  CAS  Google Scholar 

  49. Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol 2000;279:G245–G249.

    CAS  Google Scholar 

  50. Hironaka K, Sakaida I, Matsumura Y, Kaino S, Miyamoto K, Okita K. Enhanced interstitial collagenase (matrix metalloproteinase-13) production of Kupffer cell by gadolinium chloride prevents pig serum-induced rat liver fibrosis. Biochem Biophys Res Commun 2000;267(1):290–295.

    Article  PubMed  CAS  Google Scholar 

  51. Garcia-Banuelos J, Siller-Lopez F, Miranda A, Aquilar LK, Auilar-Cordova E, Armendariz-Borunda J. Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade adenoviral vectors. Evidence of cirrhosis reversion. Gene Ther 2002;9:127–134.

    Article  PubMed  CAS  Google Scholar 

  52. Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS, et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 2007;178:5288–5295.

    PubMed  CAS  Google Scholar 

  53. Uchinami H, Seki E, Brenner DA, D’Armiento J. Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology 2006;44:420–429.

    Article  PubMed  CAS  Google Scholar 

  54. Novobrantseva TI, Majeau GR, Amatucci A, Kogan S, Brenner I, Casola S, et al. Attenuated liver fibrosis in the absence of B cells. J Clin Invest 2005;115:3072–3082.

    Article  PubMed  CAS  Google Scholar 

  55. Smart DE, Vincent KJ, Arthur MJ, Eickelberg O, Castellazzi M, Mann J, et al. JunD regulates transcription of the tissue inhibitor of metalloproteinases-1 and interleukin-6 genes in activated hepatic stellate cells. J Biol Chem 2001;276:24414–24421.

    Article  PubMed  CAS  Google Scholar 

  56. Trim JE, Samra SK, Arthur MJ, Wright MC, McAulay M, Beri R, et al. Upstream tissue inhibitor of metalloproteinases-1 (TIMP-1) element-1, a novel and essential regulatory DNA motif in the human TIMP-1 gene promoter, directly interacts with a 30-kDa nuclear protein. J Biol Chem 2000;275:6657–6663.

    Article  PubMed  CAS  Google Scholar 

  57. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol 1997;15:675–705.

    Article  PubMed  CAS  Google Scholar 

  58. Milliano MT, Luxon BA. Rat hepatic stellate cells become retinoid unresponsive during activation. Hepatol Res 2005;33:225–233.

    Article  PubMed  CAS  Google Scholar 

  59. Miyahara T, Schrum L, Rippe R, Xiong S, Yee HF Jr, Motomura K, et al. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem 2000;275:35715–35722.

    Article  PubMed  CAS  Google Scholar 

  60. Hazra S, Xiong S, Wang J, Rippe RA, Kirshna V, Chatterjee K, et al. Peroxisome proliferator-activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem 2004;279:11392–11401.

    Article  PubMed  CAS  Google Scholar 

  61. Issa R, Williams E, Trim N, Kendall T, Arthur MJ, Reichen J, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 2001;48:548–557.

    Article  PubMed  CAS  Google Scholar 

  62. Wright MC, Issa R, Smart DE, Trim N, Murray GI, Primrose JN, et al. Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats. Gastroenterology 2001;121:685–698.

    Article  PubMed  CAS  Google Scholar 

  63. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998;102:538–549.

    Article  PubMed  CAS  Google Scholar 

  64. Murphy FR, Issa R, Zhou X, Ratnarajah S, Nagase H, Arthur MJ, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 2002;277:11069–11076.

    Article  PubMed  CAS  Google Scholar 

  65. Parsons CJ, Bradford BU, Pan CQ, Cheung E, Schauer M, Knorr A, et al. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology 2004;40:1106–1115.

    Article  PubMed  CAS  Google Scholar 

  66. Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005;10:927–939.

    Article  PubMed  CAS  Google Scholar 

  67. Gressner, A. M. The cell biology of liver fibrogenesis-an imbalance of proliferation, growth arrest and apoptosis of myofibroblasts. Cell Tissue Res 1998;292:447–452.

    Article  PubMed  CAS  Google Scholar 

  68. Oakley F, Meso M, Iredale JP, Green K, Marek CJ, Zhou X, et al. Inhibition of IκB kinases stimulates hepatic stellate cell apoptosis and accelerates recovery from liver fibrosis. Gastroenterology 2 2005;128:108–120.

    Article  CAS  Google Scholar 

  69. Czaja MJ. JNK/AP-1 regulation of hepatocyte death. Am J Physiol Gastrointest Liver Physiol 2003;284:G875–G879.

    PubMed  CAS  Google Scholar 

  70. Wu XQ, Wang H, Liao ZX. The effect of indole-3-carbinol on hepatic stellate cells activated by acetaldehyde in precision cut liver slices. Chin Pharmacol Bull 2007;23:441–445.

    CAS  Google Scholar 

  71. Hernández E, Bucio L, Souza V, Escobar MC, Gómez-Quiroz LE, Farfán B, et al. Pentoxifylline downregulates alpha (I) collagen expression by the inhibition of I kappa b alpha degradation in liver stellate cells. Cell Biol Toxicol 2007 Oct 20.

  72. Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K, et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2007 Nov 15.

  73. Yoshiji H, Noguchi R, Kuriyama S, Ikenaka Y, Yoshii J, Yanase K, et al. Imatinib mesylate (STI-571) attenuates liver fibrosis development in rats. Am J Physiol Gastrointest Liver Physiol 2005;288:G907–G913.

    Article  PubMed  CAS  Google Scholar 

  74. Okuno M, Akita K, Moriwaki H, Kawada N, Ikeda K, Kaneda K, et al. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta. Gastroenterology 2001;120:1784–1800.

    Article  PubMed  CAS  Google Scholar 

  75. Nakamura T, Sakata R, Ueno T, Sata M, Ueno H. Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine treated rats. Hepatology 2000;32:247–255.

    Article  PubMed  CAS  Google Scholar 

  76. Yokohama S, Yoneda M, Haneda M, Okamoto S, Okada M, Aso K, et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 2004;40:1222–1225.

    Article  PubMed  CAS  Google Scholar 

  77. Cho JJ, Hocher B, Herbst H, Jia JD, Ruehl M, Hahn EG, et al. An oral endothelin-A receptor antagonist blocks collagen synthesis and deposition in advanced rat liver fibrosis. Gastroenterology 2000;118:1169–1178.

    Article  PubMed  CAS  Google Scholar 

  78. Bueno M, Salgado S, Beas-Zárate C, Armendariz-Borunda J. Urokinase-type plasminogen activator gene therapy in liver cirrhosis is mediated by collagens gene expression down-regulation and up-regulation of MMPs, HGF and VEGF. J Gene Med 2006;8:1291–1299.

    Article  PubMed  CAS  Google Scholar 

  79. Anselmi K, Stolz DB, Nalesnik M, Watkins SC, Kamath R, Gandhi CR. Gliotoxin causes apoptosis and necrosis of rat Kupffer cells in vitro and in vivo in the absence of oxidative stress: exacerbation by caspase and serine protease inhibition. J Hepatol 2007;47:103–113.

    Article  PubMed  CAS  Google Scholar 

  80. Zu J, Fu Y, Chen A. Activation of peroxisome proliferator activated receptor-γ contributes to the inhibitory effects of curcumin on rat hepatic stellate cell growth. Am J Physiol Gastrointest Liver Physiol 2003;285:G20–G30.

    Google Scholar 

  81. Anan A, Baskin-Bey ES, Bronk SF, Werneburg NW, Shah VH, Gores GJ. Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology 2006;43:335–344.

    Article  PubMed  CAS  Google Scholar 

  82. Canturk NZ, Canturk Z, Ozden M, Dalcik H, Yardimoglu M, Tulubas F. Protective effect of IGF-1 on experimental liver cirrhosis-induced common bile duct ligation. Hepatogastroenterology 2003;50:2061–2066.

    PubMed  CAS  Google Scholar 

  83. Kim WH, Matsumoto K, Bessho K, Nakamura T. Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis. Am J Pathol 2005;166:1017–1028.

    PubMed  CAS  Google Scholar 

  84. Shackel N, Rockey D. In pursuit of the “Holy Grail”-stem cells, hepatic injury, fibrogenesis and repair. Hepatology 2005;41:16–18.

    Article  PubMed  Google Scholar 

  85. Huttmann A, Li CL, Duhrsen U. Bone marrow-derived stem cells and “plasticity”. Ann Hematol 2003;82:599–604.

    Article  PubMed  CAS  Google Scholar 

  86. Parekkadan B, van Poll D, Megeed Z, Kobayashi N, Tilles AW, Berthiaume F, et al. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun 2007;363:247–252.

    Article  PubMed  CAS  Google Scholar 

  87. Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 2004;78:83–88.

    Article  PubMed  CAS  Google Scholar 

  88. Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology 2004;40:1304–1311.

    Article  PubMed  Google Scholar 

  89. Beljaars L, Molema G, Schuppan D, Geerts A, De Bleser PJ, Weert B, et al. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor. J Biol Chem 2000;275:12743–12751.

    Article  PubMed  CAS  Google Scholar 

  90. Gonzalo T, Talman EG, van de Ven A, Temming K, Greupink R, Beljaars L, et al. Selective targeting of pentoxifylline to hepatic stellate cells using a novel platinum-based linker technology. J Control Release 2006;111:193–203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JT., Liao, ZX., Ping, J. et al. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol 43, 419–428 (2008). https://doi.org/10.1007/s00535-008-2180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-008-2180-y

Key words

Navigation