Skip to main content

Advertisement

Log in

Prognostic value of CD57+ T lymphocytes in the peripheral blood of patients with advanced gastric cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Natural killer (NK)-like T cells comprising CD56+ T cells and CD57+ T cells belong to a subset of CD1d-independent NKT cells playing an important role in regulating immune responses. Although NK-like T cells are reported to increase in patients with advanced gastric carcinomas, it remains unknown how NK-like T cells are involved in disease progression in gastric cancer patients.

Methods

The proportions of Th1 cells (interferon [IFN]-γ-producing CD4+ T cells), Th2 cells (IL-4-producing CD4+ T cells), and NK-like T cells (CD56+ T cells and CD57+ T cells) in the peripheral blood of 48 gastric cancer patients and 20 healthy controls were measured by two-color flow cytometry analysis and by intracellular cytokine analysis to investigate an association of these immune cells with the survival rate of gastric cancer patients.

Results

Univariate analysis showed that Th1 cells and CD57+ T cells, as well as some clinicopathological factors, significantly influenced the survival rate. CD57-high (≧18%) patients survived for a significantly shorter period after surgery compared to CD57-low patients (P = 0.046; Kaplan-Meier, log-rank test) in the stage III–IV patients, but not in the stage I–II patients. Further, multivariate analysis showed that lymphatic invasion was a statistically significant independent risk factor in all the gastric cancer patients, but the proportion of CD57+ T cells as well as depth of tumor were statistically significant independent risk factors in patients with advanced carcinomas (stage III–IV).

Conclusion

An increased proportion (≧18%) of CD57+ T cells in the peripheral blood of patients with advanced gastric carcinomas could indicate a poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Takii Y, Hashimoto S, Iiai T, et al. (1994) Increase in the proportion of granulated CD56+ T cells in patients with malignancy. Clin Exp Immunol 97:522–527

    PubMed  CAS  Google Scholar 

  2. Okada T, Iiai T, Kawachi Y, et al. (1995) Origin of CD8+CD57+ T cells which increase at tumour sites in patients with colorectal cancer. Clin Exp Immunol 102:159–166

    PubMed  CAS  Google Scholar 

  3. Matsuda JL, Gapin L, Fazilleau N, et al. (2001) Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor β repertoire and small clone size. Proc Natl Acad Sci U S A 98; 12636–12641

    Article  PubMed  CAS  Google Scholar 

  4. Wajchman HJ, Pierce CW, Varma VA, et al. (2004) Ex vivo expansion of CD8+CD56+ and CD8+CD56-natural killer T cells specific for MUC1 mucin. Cancer Res 64:1171–1180

    Article  PubMed  CAS  Google Scholar 

  5. Baxevanis CN, Gritzapis AD, Tsitsilois OE, et al. (2002) HER-2/neu-derived peptide epitopes are also recognized by cytotoxic CD3(+)CD56(+) (natural killer T) lymphocytes. Int J Cancer 20: 864–872

    Article  CAS  Google Scholar 

  6. Pittet MJ, Speiser DE, Valmori D, et al. (2000) Cutting edge: cytolytic effector function in human circulating CD8+ T cells closely correlates with CD56 surface expression. J Immunol 164:1148–1152

    PubMed  CAS  Google Scholar 

  7. Lu PH, Negrin RS (1995) A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol 153:1687–1696

    Google Scholar 

  8. Satoh M, Seki S, Hashimoto W, et al. (1996) Cytotoxic γδ or αβ T cells with a natural killer cell marker, CD56, induced from human peripheral blood lymphocytes by a combination of IL-12 and IL-2. J Immunol 157:3886–3892

    PubMed  CAS  Google Scholar 

  9. Izquierdo M, Balboa MA, Fernandez-Ranada JM, et al. (1990) Relation between the increase of circulating CD3+CD57+ lymphocytes and T cell dysfunction in recipients of bone marrow transplantation. Clin Exp Immunol 82:145–150

    PubMed  CAS  Google Scholar 

  10. Hilbe W, Eisterer W, Schmid C (1994) Bone marrow lymphocytes subsets in myelodysplastic syndromes. J Clin Pathol 47: 505–507

    Article  PubMed  CAS  Google Scholar 

  11. Gorochov G, Debre P, Leblond V, et al. (1994) Oligoclonal expansion of CD8+CD8+CD57+ T cells with restricted T-cell receptor β chain variability after bone marrow transplantation. Blood 83: 587–595

    PubMed  CAS  Google Scholar 

  12. Fregona I, Guttmann RD, Jean R (1985) HNK-1+ (Leu-7) and other lymphocytes subsets in long-term survivors with renal allotransplants. Transplantation 39:25–29

    PubMed  CAS  Google Scholar 

  13. Arai K, Yamamura S, Seki S, et al. (1998) Increase of CD8+CD57+ T cells in knee joints and adjacent bone marrow of rheumatoid arthritis (RA) patients: implication for an anti-inflammatory role. Clin Exp Immunol 111:345–352

    Article  PubMed  CAS  Google Scholar 

  14. Dupuy d’Angeac A, Monier S, Jorgensen C (1993) Increased percentage of CD3+, CD57+ lymphocytes in patients with rheumatoid arthritis. Correlation with duration of disease. Arthritis Rheum 36:608–612

    Article  PubMed  CAS  Google Scholar 

  15. Legac E, Autran B, Merie-Beral H, et al. (1992) CD4+CD7-CD8+CD57+ T cells:a new T-lymphocyte subset expanded during human immunodeficiency virus infection. Blood 79: 1746–1753

    PubMed  CAS  Google Scholar 

  16. Sadat-Sowti B, Debre P, Mollet L, et al. (1994) An inhibitor of cytotoxic functions produced by CD8+CD57+ T lymphocytes from patients suffering from AIDS and immunosuppressed bone marrow recipients. Eur J Immunol 24:2882–2888

    Article  PubMed  CAS  Google Scholar 

  17. Koyama S, Ebihara T, Fukao K (1992) Expression of intercellular adhesion molecule 1 (ICAM-1) during the development of invasion and/or metastasis of gastric carcinoma. J Cancer Res Clin Oncol 118:609–614

    Article  PubMed  CAS  Google Scholar 

  18. Karimine N, Nanbara S, Arinaa S, et al. (1994) Lymphokine-activated killer cell activity of peripheral blood, spleen, regional lymph node, and tumor infiltrating lymphocytes in gastric cancer patients. J Surg Oncol 66:179–185

    Article  Google Scholar 

  19. Arinaga S, Karimine N, Nanbara S, et al. (1995) Lymphokine-activated killer cell function of lymphocytes from regional lymph nodes in patients with gastric carcinoma. J Surg Oncol 58:44–49

    Article  PubMed  CAS  Google Scholar 

  20. Mosmann TR, Cherwinski H, Bond MW, et al. (1986) Two types of murine helper cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2348–2357

    PubMed  CAS  Google Scholar 

  21. Trinchieri G (1995) Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cell type 1 and cytotoxic lymphocytes. Blood 84: 4008–4027

    Google Scholar 

  22. Nishimura T, Watanabe K, Lee U, et al. (1995) Systemic in vivo antitumor activity of interleukin-12 against both transplantable and primary tumor. Immunol Lett 48:149–152

    Article  PubMed  CAS  Google Scholar 

  23. Tahara H, Zer HZ, Storkus WJ, et al. (1994) Fibroblast genetically engineered to express IL-12 can suppress tumor growth and induce antitumor immunity to murine melanoma cell lines. Cancer Res 54:182–189

    PubMed  CAS  Google Scholar 

  24. Fujiwara H, Clark SC, Hamaoka T (1996) Cellular and molecular mechanisms underlying IL-12-induced tumor regression. Ann NY Acad Sci 795:294–309

    Article  PubMed  CAS  Google Scholar 

  25. Elsasser-Beile U, Kokble N, Grussenmeyer T, et al. (1998) Th1 and Th2 cytokine response patterns in leukocyte cultures of patients with urinary bladder, renal cell and prostate carcinomas. Tumour Biol 19:470–476

    Article  PubMed  CAS  Google Scholar 

  26. Ren Z, Pang G, Clancy R, et al. (2001) Shift of the gastric T-cell response in gastric carcinoma. J Gastroenterol Hepatol 16: 142–148

    Article  PubMed  CAS  Google Scholar 

  27. Tabata T, Hazama S, Yoshino S, Oka M (1999) Th2 subset dominance among peripheral blood T lymphocytes in patients with digestive cancers. Am J Surg 177:203–208

    Article  PubMed  CAS  Google Scholar 

  28. Nakayama H, Kitayama J, Muto T, Nagawa H (2000) Characterization of intracellular cytokine profile of CD4 (+) T cells in peripheral blood and tumor draining lymph nodes of patients with gastrointestinal cancer. Jpn J Clin Oncol 30:301–305

    Article  PubMed  CAS  Google Scholar 

  29. Goto S, Sato M, Kaneko R, et al. (1999) Analysis of Th1 and Th2 cytokine production by peripheral blood mononuclear cells as a parameter of immunological dysfunction in advanced cancer patients. Cancer Immunol Immunother 48:435–442

    Article  PubMed  CAS  Google Scholar 

  30. Sato M, Goto S, Kaneko R, et al. (1998) Impaired production of Th1 cytokines and increased frequency of Th2 subsets in PBMC from advanced cancer patients. Anticancer Res 18:3951–3955

    PubMed  CAS  Google Scholar 

  31. Pellegrini P, Berghella AM, Del Beato T, et al. (1996) Disregulation in Th1 and Th2 subsets of CD4+ T cells in peripheral blood of colorectal cancer patients and involvement in cancer establishment and progression. Cancer Immunol Immunother 42:1–8

    Article  PubMed  CAS  Google Scholar 

  32. Arase H, Arase N, Nakagawa K, et al. (1993) NK1.1+ CD4+CD8-thymocytes with specific lymphokine secretion. Eur J Immunol 23:307–310

    Article  PubMed  CAS  Google Scholar 

  33. Arase H, Arase N, Saito T (1996) Interferon gamma production by natural killer (NK) cells and NK 1.1 T cells upon NKR-P1 cross-linking. J Exp Med 183:2391–2396

    Article  PubMed  CAS  Google Scholar 

  34. Kennedy B. The unified international gastric cancer staging classification. Scand J Gastroenterol 1987;22:11–13

    Article  Google Scholar 

  35. Sobin LH, Wittekind CH (1997) UICC TNM Classification of malignant tumours. John Wiley and Sons, New York

    Google Scholar 

  36. Picker LJ, Singh MK, Zdraveski Z, et al. (1995) Direct demonstration of cytokine synthesis heterogeneity among human memory/effector T cells by flow cytometry. Blood 86:1408–1419

    PubMed  CAS  Google Scholar 

  37. Divine M, Lecouedic JP, Gourdin MF, et al. (1988) Functional analysis of CD8 lymphocytes in long-term surviving patients after bone marrow transplantation. J Clin Immunol 8:140–147

    Article  PubMed  CAS  Google Scholar 

  38. Ohkawa T, Seki S, Dobashi H (2001) Systematic characterization of human CD8+ T cells with natural killer cell markers in comparison with natural killer cells and normal CD8+ T cells. Immunology 103:281–290

    Article  PubMed  CAS  Google Scholar 

  39. Sadat-Sowti B, Debre P, Idziorek T, et al. (1991) A lectin-binding soluble factor released by CD8+CD57+ lymphocytes from AIDS patients inhibits T cell cytotoxicity. Eur J Immunol 21:737–741

    Article  PubMed  CAS  Google Scholar 

  40. Leroy E, Calvo CF, Divine M, et al. (1986) Persistence of T8+/HNK-1+ suppressor lymphocytes in the blood of long-term surviving patients after allongeneic bone marrow transplantation. J Immunol 137:2180–2189

    PubMed  CAS  Google Scholar 

  41. Landay A, Larry-Gartland G, Clement LT (1983) Characterization of a phenotypically distinct subpopulation of Leu-2+ cells that suppresses T cell proliferative responses. J Immunol 131: 2757–2761

    PubMed  CAS  Google Scholar 

  42. Clement LT, Grossi CE, Larry-Gartland G (1984) Morphologic and phenotypic features of the subpopulation of Leu2+ cells that suppresses B cell differentiation. J Immunol 133:2461–2468

    PubMed  CAS  Google Scholar 

  43. Halwani F, Guttman RD, Ste-Croix H, Prud’homme GJ (1992) Identification of natural suppressor cells in long-term renal allograft recipients. Transplantation 54:973–977

    Article  PubMed  CAS  Google Scholar 

  44. Joly P, Guillon J-M, Mayud C, et al. (1989) Cell-mediated suppression of HIV-specific cytotoxic T lymphocytes. J Immunol 143: 2193–2201

    PubMed  CAS  Google Scholar 

  45. Autran B, Leblond V, Sadat-Sowti B, et al. (1991) A soluble factor released by CD8+CD57+ lymphocytes from bone marrow transplanted patients inhibits cell-mediated cytolysis. Blood 77: 2237–2241

    PubMed  CAS  Google Scholar 

  46. Mollet L, Sadat-Sowti B, Duntze J, et al. (1998) CD8hi+CD57+ T lymphocytes are enriched in antigen-specific T cells capable of down-modulating cytotoxic activity. Int Immunol 10:311–323

    Article  PubMed  CAS  Google Scholar 

  47. Frassanito MA, Silvestris F, Cafforio P, Dommacco F (1998) CD8+/CD57 cells and apoptosis suppress T-cell functions in multiple myeloma. Br J Haematol 100:469–477

    Article  PubMed  CAS  Google Scholar 

  48. Sze DM, Giesajitis G, Brown RD, et al. (2001) Clonal cytotoxic T cells are expanded in myeloma and reside in the CD8+CD57+ CD28-compartment. Blood 98:2817–2827

    Article  PubMed  CAS  Google Scholar 

  49. Chochi K, Ichikura T, Majaima T, et al. (2003) The increase of CD8+CD57+ T cells in the peripheral blood and their impaired immune functions in patients with advanced gastric cancer. Oncol Rep 20:2443–2448

    Google Scholar 

  50. Characiejus D, Pasukoniene V, Kazlauskaite K, et al. (2002) Predictive value of CD8highCD57+ lymphocyte subset in interferon therapy of patients with renal cell carcinoma. Anticancer Res 22:3679–3684

    PubMed  Google Scholar 

  51. Ishigami S, Natsugoe S, Tokuda K (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88:577–583

    Article  PubMed  CAS  Google Scholar 

  52. Villegas FR, Coca S, Villarrubia VG (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35:23–28

    Article  PubMed  Google Scholar 

  53. Reipert B, Scheuch CH, Lukowsky A, et al. (1992) CD3+CD56+ lymphocytes are not likely to be involved in antigen-specific rejection processes in long-term allograft recipients. Clin Exp Immunol 89:143–147

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Akagi.

About this article

Cite this article

Akagi, J., Baba, H. Prognostic value of CD57+ T lymphocytes in the peripheral blood of patients with advanced gastric cancer. Int J Clin Oncol 13, 528–535 (2008). https://doi.org/10.1007/s10147-008-0789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-008-0789-8

Key wordsk

Navigation