Skip to main content
Log in

Dose-dependent response of tumor vasculature to radiation therapy in combination with Sunitinib depicted by three-dimensional high-frequency power Doppler ultrasound

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Purpose

Large doses of radiation (8–20 Gy) preferentially target tumor vasculature. This vascular response is suggested to regulate tumor response to radiotherapy. Here, we investigate the relative contributions of direct cell killing by radiation versus tumor cell death due to radiation effects on the vasculature. We also examine Sunitinib’s mechanism of action as a tumor radiosensitizer.

Experimental Design

MDA-MB-231 xenografts were treated with radiation doses of 2–16 Gy alone, or in combination with bFGF (endothelial radio-protector) or Sunitinib as pharmacological modulators of the vasculature. Sunitinib was orally administered for 2 weeks at 30 mg/kg before radiotherapy; bFGF was intravenously injected 1 h prior to irradiation. Three-dimensional high-frequency power Doppler ultrasound was used to assess relative changes in tumor vasculature. Immunohistochemistry, clonogenic and tumor growth assays were used to quantify tumor response.

Results

Significant reductions in power Doppler signal of up to 50 % were observed for 8 and 16 Gy treatments, along with a dose-dependent increase in cell death. No significant change in power Doppler signal and minimal tumor cell death were noted for tumors treated with radiation and bFGF. Treatments where Sunitinib was combined with radiation demonstrated a significant increase in flow signal at doses equal or greater than 8 Gy. This was accompanied with a significant increase in cell death when compared to radiation or Sunitinib alone.

Conclusion

We confirm that tumor response to high doses of radiation is regulated by its vasculature. We also posit that the response observed when radiation is combined with Sunitinib is linked to a vascular “normalization” effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fuks Z, Kolesnick R (2005) Engaging the vascular component of the tumor response. Cancer Cell 8:89–91

    Article  PubMed  CAS  Google Scholar 

  2. García-Barros M, Thin TH, Maj J, Cordon-Cardo C, Haimovitz-Friedman A, Fuks Z et al (2010) Impact of stromal sensitivity on radiation response of tumors implanted in SCID hosts revisited. Cancer Res 70:8179–8186

    Article  PubMed  Google Scholar 

  3. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159

    Article  PubMed  CAS  Google Scholar 

  4. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293

    Article  PubMed  CAS  Google Scholar 

  5. Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY et al (2005) Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8:99–110

    Article  PubMed  CAS  Google Scholar 

  6. Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–441

    Article  PubMed  CAS  Google Scholar 

  7. Moeller BJ, Dewhirst MW (2006) HIF-1 and tumour radiosensitivity. Br J Cancer 95:1–5

    Article  PubMed  CAS  Google Scholar 

  8. Lehnert S (2007) Biomolecular action of ionizing radiation. Taylor & Francis, New York

    Book  Google Scholar 

  9. Prise KM, Schettino G, Folkard M, Held KD (2005) New insights on cell death from radiation exposure. Lancet Oncol 6:520–528

    Article  PubMed  CAS  Google Scholar 

  10. Truman J, Hambardzumyan D, Garcia-Barros M, Chan R, Fuks Z, Haimovitz-Friedman A (2006) Basic fibroblast growth factor inhibits radiation-induced apoptosis of endothelial cells by inhibiting acid sphingomyelinase activity. Radiother Oncol 78:S74

    Article  Google Scholar 

  11. Vit J-P, Rosselli F (2003) Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis. Oncogene 22:8645–8652

    Article  PubMed  CAS  Google Scholar 

  12. Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22:5897–5906

    Article  PubMed  CAS  Google Scholar 

  13. Gupta N, Nodzenski E, Khodarev NN, Yu J, Khorasani L, Beckett MA et al (2001) Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO Rep 2:536–540

    PubMed  CAS  Google Scholar 

  14. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z et al (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525

    Article  PubMed  CAS  Google Scholar 

  15. Peña LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327

    PubMed  Google Scholar 

  16. Fuks Z, Persaud RS, Alfieri A, Mcloughlin M, Ehleiter D, Schwartz JL et al (1994) Basic fibroblast growth factor protects endothelial cells against radiation induced programmed cell death in vitro and in vivo. Cancer Res 54:2582–2590

    PubMed  CAS  Google Scholar 

  17. Fuks Z, Vlodavsky I, Andreeff M, McLoughlin M, Haimovitz-Friedman A (1992) Effects of extracellular matrix on the response of endothelial cells to radiation in vitro. Eur J Cancer 28:725–731

    Article  Google Scholar 

  18. Gu Q, Wang D, Wang X, Peng R, Liu J, Jiang T et al (2004) Basic fibroblast growth factor inhibits radiation-induced apoptosis of HUVECs. I. The PI3K/AKT pathway and induction of phosphorylation of BAD. Radiat Res 161:692–702

    Article  PubMed  CAS  Google Scholar 

  19. Truman J-P, García-Barros M, Kaag M, Hambardzumyan D, Stancevic B, Chan M et al (2010) Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS ONE 5:e12310

    Article  PubMed  Google Scholar 

  20. Barcellos-Hoff MH, Park C, Wright EG (2005) Radiation and the microenvironment—tumorigenesis and therapy. Nat Rev Cancer 5:867–875

    Article  PubMed  CAS  Google Scholar 

  21. Park HJ, Griffin RJ, Hui S, Levitt H, Song CW (2012) Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Vascular 327:311–327

    Google Scholar 

  22. Cuneo KC, Geng L, Fu A, Orton D, Hallahan DE, Chakravarthy AB (2008) SU11248 (sunitinib) sensitizes pancreatic cancer to the cytotoxic effects of ionizing radiation. Int J Radiat Oncol Biol Phys 71:873–879

    Article  PubMed  CAS  Google Scholar 

  23. Schueneman AJ, Himmelfarb E, Geng L, Tan J, Donnelly E, Mendel D et al (2003) SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 63:4009–4016

    PubMed  CAS  Google Scholar 

  24. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337

    PubMed  CAS  Google Scholar 

  25. Osusky KL, Hallahan DE, Fu A, Ye F, Shyr Y, Geng L (2004) The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels. Angiogenesis 7:225–233

    Article  PubMed  CAS  Google Scholar 

  26. Faivre S, Demetri G, Sargent W, Raymond E (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6:734–745

    Article  PubMed  CAS  Google Scholar 

  27. Senan S, Smit EF (2007) Design of clinical trials of radiation combined with antiangiogenic therapy. Oncologist 12:465–477

    Article  PubMed  CAS  Google Scholar 

  28. Zwolak P, Jasinski P, Terai K, Gallus NJ, Ericson ME, Clohisy DR et al (2008) Addition of receptor tyrosine kinase inhibitor to radiation increases tumour control in an orthotopic murine model of breast cancer metastasis in bone. Eur J Cancer 44:2506–2517

    Article  PubMed  CAS  Google Scholar 

  29. Yoon SS, Stangenberg L, Lee Y-J, Rothrock C, Dreyfuss JM, Baek K-H et al (2009) Efficacy of sunitinib and radiotherapy in genetically engineered mouse model of soft-tissue sarcoma. Int J Radiat Oncol Biol Phys 74:1207–1216

    Article  PubMed  CAS  Google Scholar 

  30. O’Reilly MS (2006) Radiation combined with antiangiogenic and antivascular agents. Semin Radiat Oncol 16:45–50

    Article  PubMed  Google Scholar 

  31. Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6:395–404

    Article  PubMed  CAS  Google Scholar 

  32. Gordon MS, Mendelson DS, Kato G (2010) Tumor angiogenesis and novel antiangiogenic strategies. Int J Cancer 126:1777–1787

    PubMed  CAS  Google Scholar 

  33. Li J, Huang S, Armstrong EA, Fowler JF, Harari PM (2005) Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade. Int J Radiat Oncol Biol Phys 62:1477–1485

    Article  PubMed  CAS  Google Scholar 

  34. Timke C, Zieher H, Roth A, Hauser K, Lipson KE, Weber KJ et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res 14:2210–2219

    Article  PubMed  CAS  Google Scholar 

  35. Foster FS, Burns PN, Simpson DH, Wilson SR, Christopher DA, Goertz DE (2000) Ultrasound for the visualization and quantification of tumor microcirculation. Cancer Metastasis Rev 19:131–138

    Article  PubMed  CAS  Google Scholar 

  36. Foster F (2000) Advances in ultrasound biomicroscopy. Ultrasound Med Biol 26:1–27

    Article  PubMed  CAS  Google Scholar 

  37. Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS (2002) High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res 62:6371–6375

    PubMed  CAS  Google Scholar 

  38. Pinter SZ, Lacefield JC (2009) Understanding quantification of microvascularity with high-frequency power Doppler ultrasound. Proc SPIE 7265:72650U–72650U-9

    Article  Google Scholar 

  39. Donnelly EF, Geng L, Wojcicki WE, Fleischer AC, Hallahan DE (2001) Quantified power Doppler US of tumor blood flow correlates with microscopic quantification of tumor blood vessels. Radiology 219:166–170

    PubMed  CAS  Google Scholar 

  40. Chen J–J, Chen J-JJ, Chiang C-S, Hong J-H, Yeh C-K (2011) Assessment of tumor vasculature for diagnostic and therapeutic applications in a mouse model in vivo using 25-MHz power Doppler imaging. Ultrasonics 51:925–931

    Article  PubMed  Google Scholar 

  41. Palmowski M, Huppert J, Hauff P, Reinhardt M, Schreiner K, Socher MA et al (2008) Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency Doppler ultrasound respond differently to antiangiogenic treatment. Cancer Res 68:7042–7049

    Article  PubMed  CAS  Google Scholar 

  42. Xuan JW, Bygrave M, Jiang H, Valiyeva F, Dunmore-Buyze J, Holdsworth DW et al (2007) Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power Doppler ultrasound. Cancer Res 67:2830–2839

    Article  PubMed  CAS  Google Scholar 

  43. Ohishi H, Hirai T, Yamada R, Hirohashi S, Uchida H, Hashimoto H et al (1998) Three-dimensional power Doppler sonography of tumor vascularity. Ultrasound Med 17:619–622

    CAS  Google Scholar 

  44. Su J-M, Huang Y-F, Chen HHW, Cheng Y-M, Chou C-Y (2006) Three-dimensional power Doppler ultrasound is useful to monitor the response to treatment in a patient with primary papillary serous carcinoma of the peritoneum. Ultrasound Med Biol 32:623–626

    Article  PubMed  Google Scholar 

  45. Galván R, Mercé L, Jurado M, Mínguez JA, López-García G, Alcázar JL (2010) Three-dimensional power Doppler angiography in endometrial cancer: correlation with tumor characteristics. Ultrasound Obstet Gynecol 35:723–729

    PubMed  Google Scholar 

  46. Niermann KJ, Fleischer AC, Donnelly EF, Schueneman AJ, Geng L, Hallahan DE (2005) Sonographic depiction of changes of tumor vascularity in response to various therapies. Ultrasound Q 21:61–67 (quiz 149, 153–154)

    PubMed  Google Scholar 

  47. Ebos JML, Lee CR, Christensen JG, Mutsaers AJ, Kerbel RS (2007) Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA 104:17069–17074

    Article  PubMed  CAS  Google Scholar 

  48. Griffioen AW, Mans LA, de Graaf AMA, Nowak-Sliwinska P, de Hoog CLMM, de Jong TAM et al (2012) Rapid angiogenesis onset after discontinuation of sunitinib treatment of renal cell carcinoma patients. Clin Cancer Res 18:3961–3971

    Article  PubMed  CAS  Google Scholar 

  49. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  50. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–1223

    Article  PubMed  CAS  Google Scholar 

  51. Baker DG, Krochak RJ (1989) The response of the microvascular system to radiation: a review. Cancer Investig 7:287–294

    Article  CAS  Google Scholar 

  52. Denekamp J (1984) Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol 23:217–225

    Article  PubMed  CAS  Google Scholar 

  53. Nguyen V, Gaber MW, Sontag MR, Kiani MF (2000) Late effects of ionizing radiation on the microvascular networks in normal tissue. Radiat Res 154:531–536

    Article  PubMed  CAS  Google Scholar 

  54. Roth NM, Sontag MR, Kiani MF (1999) Early effects of ionizing radiation on the microvascular networks in normal tissue. Radiat Res 151:270–277

    Article  PubMed  CAS  Google Scholar 

  55. Ogawa K, Boucher Y, Kashiwagi S, Fukumura D, Chen D, Gerweck LE (2007) Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res 67:4016–4021

    Article  PubMed  CAS  Google Scholar 

  56. Gerweck LE, Vijayappa S, Kurimasa A, Ogawa K, Chen DJ (2006) Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res 66:8352–8355

    Article  PubMed  CAS  Google Scholar 

  57. El Kaffas A, Tran W, Czarnota GJ (2012) Vascular strategies for enhancing tumour response to radiation therapy. Technol Cancer Res Treatment 11:421–432

    Google Scholar 

Download references

Acknowledgments

This work was supported by the CBCF and the Terry Fox Foundation through a program project grant “Ultrasound for Cancer Therapy”. Aspects of the work were also supported by a cancer care Ontario (CCO) research grant in experimental therapeutics and imaging. We would like to thank Clinton Hupple for his help in the technical development of the power Doppler imaging set-up. I would also like to thank Dr. Kolios for scientific insight. Finally, the authors thank Dr. Kerbel for his generous donation of MDA-MB-231 cells. Dr. Gregory Czarnota is supported by a CCO Research Chair in Experimental Therapeutics and Imaging. All animal experiments presented in this paper were conducted in compliance with protocols approved by the Sunnybrook Health Science Centre Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Czarnota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Kaffas, A., Giles, A. & Czarnota, G.J. Dose-dependent response of tumor vasculature to radiation therapy in combination with Sunitinib depicted by three-dimensional high-frequency power Doppler ultrasound. Angiogenesis 16, 443–454 (2013). https://doi.org/10.1007/s10456-012-9329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9329-2

Keywords

Navigation