Skip to main content

Advertisement

Log in

Down-regulation of cFLIP following reovirus infection sensitizes human ovarian cancer cells to TRAIL-induced apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) shows promise as a chemotherapeutic agent. However, many human cancer cells are resistant to killing by TRAIL. We have previously demonstrated that reovirus infection increases the susceptibility of human lung (H157) and breast (ZR75-1) cancer cell lines to TRAIL-induced apoptosis. We now show that reovirus also increases the susceptibility of human ovarian cancer cell lines (OVCAR3, PA-1 and SKOV-3) to TRAIL-induced apoptosis. Reovirus-induced increases in susceptibility of OVCAR3 cells to TRAIL require virus uncoating and involve increased activation of caspases 3 and 8. Reovirus infection results in the down-regulation of cFLIP (cellular FLICE inhibitory protein) in OVCAR3 cells. Down-regulation of cFLIP following treatment of OVCAR3 cells with antisense cFLIP oligonucleotides or PI3 kinase inhibition also increases the susceptibility of OVCAR3 cells to TRAIL-induced apoptosis. Finally, over-expression of cFLIP blocks reovirus-induced sensitization of OVCAR3 cells to TRAIL-induced apoptosis. The combination of reovirus and TRAIL thus represents a promising new therapeutic approach for the treatment of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA (1999) Cancer statistics, 1999. CA Cancer J Clin 49:8–31, 1

    Article  CAS  PubMed  Google Scholar 

  2. Partridge EE, Barnes MN (1999) Epithelial ovarian cancer: Prevention, diagnosis, and treatment. CA Cancer J Clin 49:297–20

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi A, Dixit VM (1998) Death receptors: Signaling and modulation. Science 281:1305–308

    Article  CAS  PubMed  Google Scholar 

  4. Hao C, Beguinot F, Condorelli G, et al (2001) Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res 61:1162–170

    CAS  PubMed  Google Scholar 

  5. Chang DW, Xing Z, Pan Y, et al (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21:3704–714

    Article  CAS  PubMed  Google Scholar 

  6. Ashkenazi A, Pai RC, Fong S, et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–62.

    Article  CAS  PubMed  Google Scholar 

  7. Walczak H, Miller RE, Ariail K, et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–63

    Article  CAS  PubMed  Google Scholar 

  8. Wiley SR, Schooley K, Smolak PJ, et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–82

    Article  CAS  PubMed  Google Scholar 

  9. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–2690

    Article  CAS  PubMed  Google Scholar 

  10. Bodmer JL, Holler N, Reynard S, et al (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2:241–43

    Article  CAS  PubMed  Google Scholar 

  11. Kischkel FC, Hellbardt S, Behrmann I, et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–588

    CAS  PubMed  Google Scholar 

  12. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–930

    Article  CAS  PubMed  Google Scholar 

  13. Boatright KM, Renatus M, Scott FL, et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–41

    Article  CAS  PubMed  Google Scholar 

  14. Degli-Esposti MA, Smolak PJ, Walczak H, et al (1997) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family. J Exp Med 186:1165–170

    Article  CAS  PubMed  Google Scholar 

  15. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG (1997) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7:813–20

    Article  CAS  PubMed  Google Scholar 

  16. Marsters SA, Sheridan JP, Pitti RM, et al (1997) A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol 7:1003–006

    Article  CAS  PubMed  Google Scholar 

  17. Sheridan JP, Marsters SA, Pitti RM, et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–21

    Article  CAS  PubMed  Google Scholar 

  18. Emery JG, McDonnell P, Burke MB, et al (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363–4367

    Article  CAS  PubMed  Google Scholar 

  19. Holen I, Croucher PI, Hamdy FC, Eaton CL (2002) Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 62:1619–623

    CAS  PubMed  Google Scholar 

  20. Neville-Webbe HL, Cross NA, Eaton CL, et al (2004) Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis. Breast Cancer Res Treat 86:269–79

    Article  CAS  PubMed  Google Scholar 

  21. Shipman CM, Croucher PI (2003) Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 63:912–16

    CAS  PubMed  Google Scholar 

  22. Bonavida B, Ng CP, Jazirehi A, Schiller G, Mizutani Y (1999) Selectivity of TRAIL-mediated apoptosis of cancer cells and synergy with drugs: The trail to non-toxic cancer therapeutics (review). Int J Oncol 15:793–02

    CAS  PubMed  Google Scholar 

  23. Eggert A, Grotzer MA, Zuzak TJ, Wiewrodt BR, Ikegaki N, Brodeur GM (2000) Resistance to TRAIL-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Med Pediatr Oncol 35:603–07

    Article  CAS  PubMed  Google Scholar 

  24. Grotzer MA, Eggert A, Zuzak TJ, et al (2000) Resistance to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogene 19:4604–610

    Article  CAS  PubMed  Google Scholar 

  25. Hu WH, Johnson H, Shu HB (2000) Activation of NF-kappaB by FADD, Casper, and caspase-8. J Biol Chem 275:10838–0844

    Article  CAS  PubMed  Google Scholar 

  26. Deng Y, Lin Y, Wu X (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16:33–5

    Article  CAS  PubMed  Google Scholar 

  27. Fulda S, Meyer E, Debatin KM (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21:2283–294

    Article  CAS  PubMed  Google Scholar 

  28. Hinz S, Trauzold A, Boenicke L, et al (2000) Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 19:5477–486

    Article  CAS  PubMed  Google Scholar 

  29. Kim K, Fisher MJ, Xu SQ, el Deiry WS (2000) Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 6:335–46

    CAS  PubMed  Google Scholar 

  30. Siegmund D, Hadwiger P, Pfizenmaier K, Vornlocher HP, Wajant H (2002) Selective inhibition of FLICE-like inhibitory protein expression with small interfering RNA oligonucleotides is sufficient to sensitize tumor cells for TRAIL-induced apoptosis. Mol Med 8:725–32

    CAS  PubMed  Google Scholar 

  31. Cuello M, Ettenberg SA, Nau MM, Lipkowitz S (2001) Synergistic induction of apoptosis by the combination of trail and chemotherapy in chemoresistant ovarian cancer cells. Gynecol Oncol 81:380–90

    Article  CAS  PubMed  Google Scholar 

  32. Siervo-Sassi RR, Marrangoni AM, Feng X, et al (2003) Physiological and molecular effects of Apo2L/TRAIL and cisplatin in ovarian carcinoma cell lines. Cancer Lett 190:61–2

    Article  CAS  PubMed  Google Scholar 

  33. Lane D, Cartier A, L’Esperance S, Cote M, Rancourt C, Piche A (2004) Differential induction of apoptosis by tumor necrosis factor-related apoptosis-inducing ligand in human ovarian carcinoma cells. Gynecol Oncol 93:594–04

    Article  CAS  PubMed  Google Scholar 

  34. Vignati S, Codegoni A, Polato F, Broggini M (2002) Trail activity in human ovarian cancer cells: Potentiation of the action of cytotoxic drugs. Eur J Cancer 38:177–83

    Article  CAS  PubMed  Google Scholar 

  35. Tomek S, Horak P, Pribill I, et al (2004) Resistance to TRAIL-induced apoptosis in ovarian cancer cell lines is overcome by co-treatment with cytotoxic drugs. Gynecol Oncol 94:107–14

    Article  CAS  PubMed  Google Scholar 

  36. Horak P, Pils D, Kaider A, et al (2005) Perturbation of the tumor necrosis factor–related apoptosis-inducing ligand cascade in ovarian cancer: Overexpression of FLIPL and deregulation of the functional receptors DR4 and DR5. Clin Cancer Res 11:8585–591

    Article  CAS  PubMed  Google Scholar 

  37. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276:20633–0640

    Article  CAS  PubMed  Google Scholar 

  38. Chang DW, Xing Z, Pan Y, et al (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21:3704–714

    Article  CAS  PubMed  Google Scholar 

  39. Micheau O, Thome M, Schneider P, et al (2002) The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 277:45162–5171

    Article  CAS  PubMed  Google Scholar 

  40. Boatright KM, Deis C, Denault JB, Sutherlin DP, Salvesen GS (2004) Activation of caspases-8 and -10 by FLIP(L). Biochem J 382:651–57

    Article  CAS  PubMed  Google Scholar 

  41. Strong JE, Lee PW (1996) The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection. J Virol 70:612–16

    CAS  PubMed  Google Scholar 

  42. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW (1998) The molecular basis of viral oncolysis: Usurpation of the Ras signaling pathway by reovirus. EMBO J 17:3351–362

    Article  CAS  PubMed  Google Scholar 

  43. Coffey MC, Strong JE, Forsyth PA, Lee PW (1998) Reovirus therapy of tumors with activated Ras pathway. Science 282:1332–334

    Article  CAS  PubMed  Google Scholar 

  44. Hirasawa K, Nishikawa SG, Norman KL, Alain T, Kossakowska A, Lee PW (2002) Oncolytic reovirus against ovarian and colon cancer. Cancer Res 62:1696–701

    CAS  PubMed  Google Scholar 

  45. Alain T, Hirasawa K, Pon KJ, et al (2002) Reovirus therapy of lymphoid malignancies. Blood 100:4146–153

    Article  CAS  PubMed  Google Scholar 

  46. Norman KL, Coffey MC, Hirasawa K, et al (2002) Reovirus oncolysis of human breast cancer. Hum Gene Ther 13:641–52

    Article  CAS  PubMed  Google Scholar 

  47. Wilcox ME, Yang W, Senger D, et al (2001) Reovirus as an oncolytic agent against experimental human malignant gliomas. J Natl Cancer Inst 93:903–12

    Article  CAS  PubMed  Google Scholar 

  48. Ikeda Y, Nishimura G, Yanoma S, Kubota A, Furukawa M, Tsukuda M (2004) Reovirus oncolysis in human head and neck squamous carcinoma cells. Auris Nasus Larynx 31:407–12

    PubMed  Google Scholar 

  49. Tyler KL, Squier MK, Brown AL, et al (1996) Linkage between reovirus-induced apoptosis and inhibition of cellular DNA synthesis: Role of the S1 and M2 genes. J Virol 70:7984–991

    CAS  PubMed  Google Scholar 

  50. Connolly JL, Dermody TS (2002) Virion disassembly is required for apoptosis induced by reovirus. J Virol 76:1632–641

    Article  CAS  PubMed  Google Scholar 

  51. Okano H, Shiraki K, Inoue H, et al (2003) Cellular FLICE/caspase-8-inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma. Lab Invest 83:1033–043

    Article  CAS  PubMed  Google Scholar 

  52. Perlman H, Pagliari LJ, Georganas C, Mano T, Walsh K, Pope RM (1999) FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis. J Exp Med 190:1679–688

    Article  CAS  PubMed  Google Scholar 

  53. Tyler KL, Squier MK, Rodgers SE, et al (1995) Differences in the capacity of reovirus strains to induce apoptosis are determined by the viral attachment protein sigma 1. J Virol 69:6972–979

    CAS  PubMed  Google Scholar 

  54. Clarke P, Meintzer SM, Spalding AC, Johnson GL, Tyler KL (2001) Caspase 8-dependent sensitization of cancer cells to TRAIL-induced apoptosis following reovirus-infection. Oncogene 20:6910–919

    Article  CAS  PubMed  Google Scholar 

  55. Slinker BK (1998) The statistics of synergism. J Mol Cell Cardiol 30:723–31

    Article  CAS  PubMed  Google Scholar 

  56. Sturzenbecker LJ, Nibert M, Furlong D, Fields BN (1987) Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infectious cycle. J Virol 61:2351–361

    CAS  PubMed  Google Scholar 

  57. Bortul R, Tazzari PL, Cappellini A, et al (2003) Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-kappaB activation and cFLIP(L) up-regulation. Leukemia 17:379–89

    Article  CAS  PubMed  Google Scholar 

  58. Asakuma J, Sumitomo M, Asano T, Asano T, Hayakawa M (2003) Selective Akt inactivation and tumor necrosis actor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res 63: 1365–370

    CAS  PubMed  Google Scholar 

  59. Ryu BK, Lee MG, Chi SG, Kim YW, Park JH (2001) Increased expression of cFLIP(L) in colonic adenocarcinoma. J Pathol 194:15–9

    Article  CAS  PubMed  Google Scholar 

  60. Jonsson G, Paulie S, Grandien A (2003) High level of cFLIP correlates with resistance to death receptor-induced apoptosis in bladder carcinoma cells. Anticancer Res 23:1213–218

    PubMed  Google Scholar 

  61. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161:2833–840

    CAS  PubMed  Google Scholar 

  62. Brooks AD, Sayers TJ (2005) Reduction of the antiapoptotic protein cFLIP enhances the susceptibility of human renal cancer cells to TRAIL apoptosis. Cancer Immunol Immunother 54:499–05

    Article  CAS  PubMed  Google Scholar 

  63. Van Valen F, Fulda S, Schafer KL, et al (2003) Selective and nonselective toxicity of TRAIL/Apo2L combined with chemotherapy in human bone tumour cells vs. normal human cells. Int J Cancer 107:929–40

    Article  CAS  PubMed  Google Scholar 

  64. Shankar S, Singh TR, Fandy TE, Luetrakul T, Ross DD, Srivastava RK (2005) Interactive effects of histone deacetylase inhibitors and TRAIL on apoptosis in human leukemia cells: Involvement of both death receptor and mitochondrial pathways. Int J Mol Med 16:1125–138

    CAS  PubMed  Google Scholar 

  65. El Zawahry A, Lu P, White SJ, Voelkel-Johnson C (2006) in vitro efficacy of AdTRAIL gene therapy of bladder cancer is enhanced by trichostatin A-mediated restoration of CAR expression and downregulation of cFLIP and Bcl-XL. Cancer Gene Ther 13:281–89

    Article  CAS  PubMed  Google Scholar 

  66. Shishodia S, Aggarwal BB (2004) Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J Biol Chem 279:47148–7158

    Article  CAS  PubMed  Google Scholar 

  67. Piva R, Gianferretti P, Ciucci A, Taulli R, Belardo G, Santoro MG (2005) 15-Deoxy-delta 12,14-prostaglandin J2 induces apoptosis in human malignant B cells: An effect associated with inhibition of NF-kappa B activity and down-regulation of antiapoptotic proteins. Blood 105:1750–758

    Article  CAS  PubMed  Google Scholar 

  68. Boehrer S, Nowak D, Puccetti E, et al (2006) Prostate-apoptosis-response-gene-4 increases sensitivity to TRAIL-induced apoptosis. Leuk Res 30:597–05

    Article  CAS  PubMed  Google Scholar 

  69. DeBiasi RL, Clarke P, Meintzer S, et al (2003) Reovirus-induced alteration in expression of apoptosis and DNA repair genes with potential roles in viral pathogenesis. J Virol 77:8934–947

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penny Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, P., Tyler, K.L. Down-regulation of cFLIP following reovirus infection sensitizes human ovarian cancer cells to TRAIL-induced apoptosis. Apoptosis 12, 211–223 (2007). https://doi.org/10.1007/s10495-006-0528-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0528-4

Keywords

Navigation