Skip to main content

Advertisement

Log in

A gene expression signature identifies two prognostic subgroups of basal breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Prognosis of basal breast cancers is poor but heterogeneous. Medullary breast cancers (MBC) display a basal profile, but a favorable prognosis. We hypothesized that a previously published 368-gene expression signature associated with MBC might serve to define a prognostic classifier in basal cancers. We collected public gene expression and histoclinical data of 2145 invasive early breast adenocarcinomas. We developed a Support Vector Machine (SVM) classifier based on this 368-gene list in a learning set, and tested its predictive performances in an independent validation set. Then, we assessed its prognostic value and that of six prognostic signatures for disease-free survival (DFS) in the remaining 2034 samples. The SVM model accurately classified all MBC samples in the learning and validation sets. A total of 466 cases were basal across other sets. The SVM classifier separated them into two subgroups, subgroup 1 (resembling MBC) and subgroup 2 (not resembling MBC). Subgroup 1 exhibited 71% 5-year DFS, whereas subgroup 2 exhibited 50% (P = 9.93E-05). The classifier outperformed the classical prognostic variables in multivariate analysis, conferring lesser risk for relapse in subgroup 1 (HR = 0.52, P = 3.9E-04). This prognostic value was specific to the basal subtype, in which none of the other prognostic signatures was informative. Ontology analysis revealed effective immune response (IR), enhanced tumor cell apoptosis, elevated levels of metastasis-inhibiting factors and low levels of metastasis-promoting factors in the good-prognosis subgroup, and a more developed cell migration system in the poor-prognosis subgroup. In conclusion, based on this 368-gene SVM model derived from an MBC signature, basal breast cancers were classified in two prognostic subgroups, suggesting that MBC and basal breast cancers share similar molecular alterations associated with aggressiveness. This signature could help define the prognosis, adapt the systemic treatment, and identify new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DFS:

Disease-free survival

DWD:

Distance weighted discrimination

ER:

Estrogen receptor

GEO:

Gene expression omnibus

HR:

Hazard ratio

IHC:

Immunohistochemistry

IPC:

Institut Paoli-Calmettes

MBC:

Medullary breast cancer

NCBI:

National cancer for biotechnology information

PR:

Progesterone receptor

SBR:

Scarff Bloom Richardson

SSP:

Single sample predictor

SVM:

Support vector machine

References

  1. Bertucci F, Finetti P, Cervera N et al (2006) Gene expression profiling and clinical outcome in breast cancer. Omics 10:429–443

    Article  PubMed  CAS  Google Scholar 

  2. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  3. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  4. Sorlie T, Wang Y, Xiao C et al (2006) Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics 7:127

    Article  PubMed  Google Scholar 

  5. Carey LA, Perou CM, Livasy CA et al (2006) Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA 295:2492–2502

    Article  PubMed  CAS  Google Scholar 

  6. Adelaide J, Finetti P, Bekhouche I et al (2007) Integrated profiling of basal and luminal breast cancers. Cancer Res 67:11565–11575

    Article  PubMed  CAS  Google Scholar 

  7. Bertucci F, Finetti P, Cervera N et al (2009) How different are luminal A and basal breast cancers? Int J Cancer 124:1338–1348

    Article  PubMed  CAS  Google Scholar 

  8. Pusztai LI (2009) Gene expression profiling of breast cancer. Breast Cancer Res 11 Suppl 3:S11

    Article  PubMed  Google Scholar 

  9. Troester MA, Hoadley KA, Sorlie T et al (2004) Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res 64:4218–4226

    Article  PubMed  CAS  Google Scholar 

  10. Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14:5158–5165

    Article  PubMed  CAS  Google Scholar 

  11. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  12. van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  PubMed  Google Scholar 

  13. Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    Article  PubMed  CAS  Google Scholar 

  14. Chang HY, Sneddon JB, Alizadeh AA et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7

    Article  PubMed  Google Scholar 

  15. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  PubMed  CAS  Google Scholar 

  16. Miller LD, Smeds J, George J et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555

    Article  PubMed  CAS  Google Scholar 

  17. Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

  18. Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226

    Article  PubMed  CAS  Google Scholar 

  19. Rody A, Holtrich U, Pusztai L et al (2009) T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res 11:R15

    Article  PubMed  Google Scholar 

  20. Teschendorff AE, Caldas CI (2008) A robust classifier of high predictive value to identify good prognosis patients in ER-negative breast cancer. Breast Cancer Res 10:R73

    Article  PubMed  Google Scholar 

  21. Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas CI (2007) An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome Biol 8:R157

    Article  PubMed  Google Scholar 

  22. Kreike B, van Kouwenhove M, Horlings H et al (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9:R65

    Article  PubMed  Google Scholar 

  23. Da Silva L, Clarke C, Lakhani SRI (2007) Demystifying basal-like breast carcinomas. J Clin Pathol 60:1328–1332

    Article  PubMed  CAS  Google Scholar 

  24. Olivotto IA, Bajdik CD, Ravdin PM et al (2005) Population-based validation of the prognostic model ADJUVANT! for early breast cancer. J Clin Oncol 23:2716–2725

    Article  PubMed  Google Scholar 

  25. Dent R, Hanna WM, Trudeau M et al (2009) Time to disease recurrence in basal-type breast cancers: effects of tumor size and lymph node status. Cancer 115:4917–4923

    Google Scholar 

  26. Schneider BP, Winer EP, Foulkes WD et al (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14:8010–8018

    Article  PubMed  CAS  Google Scholar 

  27. Palmieri D, Lockman PR, Thomas FC et al (2009) Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res 15:6148–6157

    Google Scholar 

  28. Bertucci F, Finetti P, Cervera N et al (2006) Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res 66:4636–4644

    Article  PubMed  CAS  Google Scholar 

  29. Vincent-Salomon A, Gruel N, Lucchesi C et al (2007) Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res 9:R24

    Article  PubMed  Google Scholar 

  30. Weigelt B, Horlings HM, Kreike B et al (2008) Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol 216:141–150

    Article  PubMed  CAS  Google Scholar 

  31. Finetti P, Cervera N, Charafe-Jauffret E et al (2008) Sixteen-kinase gene expression identifies luminal breast cancers with poor prognosis. Cancer Res 68:767–776

    Article  PubMed  CAS  Google Scholar 

  32. Desmedt C, Piette F, Loi S et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3214

    Article  PubMed  CAS  Google Scholar 

  33. Ivshina AV, George J, Senko O et al (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66:10292–10301

    Article  PubMed  CAS  Google Scholar 

  34. Hess KR, Anderson K, Symmans WF et al (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24:4236–4244

    Article  PubMed  CAS  Google Scholar 

  35. Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    Article  PubMed  Google Scholar 

  36. Perreard L, Fan C, Quackenbush JF et al (2006) Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 8:R23

    Article  PubMed  Google Scholar 

  37. Herschkowitz JI, Simin K, Weigman VJ et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76

    Article  PubMed  Google Scholar 

  38. Hoadley KA, Weigman VJ, Fan C et al (2007) EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics 8:258

    Article  PubMed  Google Scholar 

  39. Mullins M, Perreard L, Quackenbush JF et al (2007) Agreement in breast cancer classification between microarray and quantitative reverse transcription PCR from fresh-frozen and formalin-fixed, paraffin-embedded tissues. Clin Chem 53:1273–1279

    Article  PubMed  CAS  Google Scholar 

  40. Oh DS, Troester MA, Usary J et al (2006) Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24:1656–1664

    Article  PubMed  CAS  Google Scholar 

  41. Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  PubMed  Google Scholar 

  42. Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158

    Article  PubMed  CAS  Google Scholar 

  43. Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  44. Benito M, Parker J, Du Q et al (2004) Adjustment of systematic microarray data biases. Bioinformatics 20:105–114

    Article  PubMed  CAS  Google Scholar 

  45. Palmer C, Diehn M, Alizadeh AA, Brown POI (2006) Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics 7:115

    Article  PubMed  Google Scholar 

  46. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  PubMed  CAS  Google Scholar 

  47. Kim SYI (2009) Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinform 10:147

    Article  Google Scholar 

  48. Sotiriou C, Piccart MJI (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553

    Article  PubMed  CAS  Google Scholar 

  49. Chang HY, Nuyten DS, Sneddon JB et al (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102:3738–3743

    Article  PubMed  CAS  Google Scholar 

  50. Van Laere S, Beissbarth T, Van der Auwera I et al (2008) Relapse-free survival in breast cancer patients is associated with a gene expression signature characteristic for inflammatory breast cancer. Clin Cancer Res 14:7452–7460

    Article  PubMed  Google Scholar 

  51. Hisada M, Kamiya S, Fujita K et al (2004) Potent antitumor activity of interleukin-27. Cancer Res 64:1152–1156

    Article  PubMed  CAS  Google Scholar 

  52. Li Q, Verma IMI (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734

    Article  PubMed  CAS  Google Scholar 

  53. Pages F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666

    Article  PubMed  CAS  Google Scholar 

  54. Schmidt M, Bohm D, von Torne C et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68:5405–5413

    Article  PubMed  CAS  Google Scholar 

  55. de Kruijf EM, van Nes JG, Sajet A et al (2010) The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res 16:1272–1280

    Article  PubMed  Google Scholar 

  56. Denkert C, Loibl S, Noske A et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28:105–113

    Article  PubMed  CAS  Google Scholar 

  57. Yoon CH, Lee ES, Lim DS, Bae YSI (2009) PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53. Proc Natl Acad Sci USA 106:7852–7857

    Article  PubMed  CAS  Google Scholar 

  58. Liu H, Zang C, Fenner MH, Possinger K, Elstner EI (2003) PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Res Treat 79:63–74

    Article  PubMed  CAS  Google Scholar 

  59. Jarrar MH, Baranova AI (2007) PPARgamma activation by thiazolidinediones (TZDs) may modulate breast carcinoma outcome: the importance of interplay with TGFbeta signalling. J Cell Mol Med 11:71–87

    Article  PubMed  CAS  Google Scholar 

  60. Yen WC, Prudente RY, Corpuz MR, Negro-Vilar A, Lamph WWI (2006) A selective retinoid X receptor agonist bexarotene (LGD1069, targretin) inhibits angiogenesis and metastasis in solid tumours. Br J Cancer 94:654–660

    PubMed  CAS  Google Scholar 

  61. Chao WT, Kunz JI (2009) Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. FEBS Lett 583:1337–1343

    Article  PubMed  CAS  Google Scholar 

  62. Echarri A, Muriel O, Del Pozo MAI (2007) Intracellular trafficking of raft/caveolae domains: insights from integrin signaling. Semin Cell Dev Biol 18:627–637

    Article  PubMed  CAS  Google Scholar 

  63. Bakin AV, Safina A, Rinehart C et al (2004) A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell 15:4682–4694

    Article  PubMed  CAS  Google Scholar 

  64. Untergasser G, Gander R, Lilg C et al (2005) Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation. Mech Ageing Dev 126:59–69

    Article  PubMed  CAS  Google Scholar 

  65. Groth S, Schulze M, Kalthoff H, Fandrich F, Ungefroren HI (2005) Adhesion and Rac1-dependent regulation of biglycan gene expression by transforming growth factor-beta. Evidence for oxidative signaling through NADPH oxidase. J Biol Chem 280:33190–33199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our study is supported by Institut Paoli-Calmettes, Inserm, Institut National du Cancer (Tr 2008), Association pour le Recherche contre le Cancer, Ligue Nationale contre le Cancer (label DB), and Fondation pour la Recherche Médicale (RS 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bertucci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 24 kb)

Supplementary material 2 (XLS 76 kb)

Supplementary material 3 (XLS 82 kb)

Supplementary material 4 (XLS 38 kb)

Supplementary material 5 (XLS 24 kb)

10549_2010_897_MOESM6_ESM.tif

Supplementary Fig. 1. GSEA shows correlations between our SVM model-based classification of basal breast cancers and cell-type specific gene expression signatures of leucocytes. A Results of GSEA with the five tested signatures. NES, normalized enrichment score; FDR, false discovery rate. B Enrichment plots for the three significant signatures: B-cell, T-cell, and CD8+ T-cell (from left to right). (TIFF 1470 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabatier, R., Finetti, P., Cervera, N. et al. A gene expression signature identifies two prognostic subgroups of basal breast cancer. Breast Cancer Res Treat 126, 407–420 (2011). https://doi.org/10.1007/s10549-010-0897-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0897-9

Keywords

Navigation