Skip to main content

Advertisement

Log in

Loss of protein tyrosine phosphatase, non-receptor type 2 is associated with activation of AKT and tamoxifen resistance in breast cancer

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer is a heterogeneous disease and new clinical markers are needed to individualise disease management and therapy further. Alterations in the PI3K/AKT pathway, mainly PIK3CA mutations, have been shown frequently especially in the luminal breast cancer subtypes, suggesting a cross-talk between ER and PI3K/AKT. Aberrant PI3K/AKT signalling has been connected to poor response to anti-oestrogen therapies. In vitro studies have shown protein tyrosine phosphatase, non-receptor type 2 (PTPN2) as a previously unknown negative regulator of the PI3K/AKT pathway. Here, we evaluate possible genomic alterations in the PTPN2 gene and its potential as a new prognostic and treatment predictive marker for endocrine therapy benefit in breast cancer. PTPN2 gene copy number was assessed by real-time PCR in 215 tumour samples from a treatment randomised study consisting of postmenopausal patients diagnosed with stage II breast cancer 1976–1990. Corresponding mRNA expression levels of PTPN2 were evaluated in 86 available samples by the same methodology. Gene copy loss of PTPN2 was detected in 16 % (34/215) of the tumours and this was significantly correlated with lower levels of PTPN2 mRNA. PTPN2 gene loss and lower mRNA levels were associated with activation of AKT and a poor prognosis. Furthermore, PTPN2 gene loss was a significant predictive marker of poor benefit from tamoxifen treatment. In conclusion, genomic loss of PTPN2 may be a previously unknown mechanism of PI3K/AKT upregulation in breast cancer. PTPN2 status is a potential new clinical marker of endocrine treatment benefit which could guide further individualised therapies in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AKT:

v-AKT murine thymoma viral oncogene homologue

APP:

Amyloid precursor protein

BCS:

Breast cancer-specific survival

CMF:

Cyclophosphamide-methotrexate-5-fluorouracil

DRFS:

Distant recurrence-free survival

EGFR:

Epidermal growth factor receptor

ER:

Oestrogen-receptor

HER2:

Human epidermal growth factor receptor 2

IR:

Insulin receptor

JAK/STAT:

Janus kinase/signal transducers and activators of transcription

PI3K:

Phosphatidylinositol 3-kinase

PTEN:

Phosphatase and tensin homologue

PTPN2:

Protein tyrosine phosphatase, non-receptor type 2

RT:

Radiotherapy

References

  1. Hers I, Vincent EE, Tavare JM (2011) Akt signalling in health and disease. Cell Signal 23(10):1515–1527. doi:10.1016/j.cellsig.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  2. Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13(2):140–156. doi:10.1038/nrd4204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Miller TW, Rexer BN, Garrett JT, Arteaga CL (2011) Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res 13(6):224. doi:10.1186/bcr3039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Miller TW, Balko JM, Arteaga CL (2011) Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol 29(33):4452–4461. doi:10.1200/JCO.2010.34.4879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Klingler-Hoffmann M, Fodero-Tavoletti MT, Mishima K, Narita Y, Cavenee WK, Furnari FB, Huang HJ, Tiganis T (2001) The protein tyrosine phosphatase TCPTP suppresses the tumorigenicity of glioblastoma cells expressing a mutant epidermal growth factor receptor. J Biol Chem 276(49):46313–46318. doi:10.1074/jbc.M106571200

    Article  CAS  PubMed  Google Scholar 

  6. Tiganis T, Kemp BE, Tonks NK (1999) The protein-tyrosine phosphatase TCPTP regulates epidermal growth factor receptor-mediated and phosphatidylinositol 3-kinase-dependent signaling. J Biol Chem 274(39):27768–27775

    Article  CAS  PubMed  Google Scholar 

  7. Climent J, Martinez-Climent JA, Blesa D, Garcia-Barchino MJ, Saez R, Sanchez-Izquierdo D, Azagra P, Lluch A, Garcia-Conde J (2002) Genomic loss of 18p predicts an adverse clinical outcome in patients with high-risk breast cancer. Clin Cancer Res 8(12):3863–3869

    CAS  PubMed  Google Scholar 

  8. Addou-Klouche L, Adelaide J, Finetti P, Cervera N, Ferrari A, Bekhouche I, Sircoulomb F, Sotiriou C, Viens P, Moulessehoul S, Bertucci F, Birnbaum D, Chaffanet M (2010) Loss, mutation and deregulation of L3MBTL4 in breast cancers. Mol Cancer 9:213. doi:10.1186/1476-4598-9-213

    Article  PubMed Central  PubMed  Google Scholar 

  9. Rutqvist LE, Johansson H (2006) Long-term follow-up of the Stockholm randomized trials of postoperative radiation therapy versus adjuvant chemotherapy among ‘high risk’ pre- and postmenopausal breast cancer patients. Acta Oncol 45(5):517–527. doi:10.1080/02841860600702068

    Article  CAS  PubMed  Google Scholar 

  10. Rutqvist LE, Johansson H, Stockholm Breast Cancer Study G (2007) Long-term follow-up of the randomized Stockholm trial on adjuvant tamoxifen among postmenopausal patients with early stage breast cancer. Acta Oncol 46(2):133–145. doi:10.1080/02841860601034834

    Article  CAS  PubMed  Google Scholar 

  11. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, Statistics Subcommittee of NCIEWGoCD (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235. doi:10.1007/s10549-006-9242-8

    Article  PubMed  Google Scholar 

  12. Askmalm MS, Carstensen J, Nordenskjöld B, Olsson B, Rutqvist LE, Skoog L, Stål O (2004) Mutation and accumulation of p53 related to results of adjuvant therapy of postmenopausal breast cancer patients. Acta Oncol 43(3):235–244

    Article  CAS  PubMed  Google Scholar 

  13. Bieche I, Olivi M, Champeme MH, Vidaud D, Lidereau R, Vidaud M (1998) Novel approach to quantitative polymerase chain reaction using real-time detection: application to the detection of gene amplification in breast cancer. Int J Cancer 78(5):661–666

    Article  CAS  PubMed  Google Scholar 

  14. Karlsson E, Waltersson MA, Bostner J, Perez-Tenorio G, Olsson B, Hallbeck AL, Stål O (2011) High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1. Genes Chromosom Cancer 50(10):775–787. doi:10.1002/gcc.20900

    Article  CAS  PubMed  Google Scholar 

  15. Khoshnoud MR, Löfdahl B, Fohlin H, Fornander T, Stål O, Skoog L, Bergh J, Nordenskjöld B (2011) Immunohistochemistry compared to cytosol assays for determination of estrogen receptor and prediction of the long-term effect of adjuvant tamoxifen. Breast Cancer Res Treat 126(2):421–430. doi:10.1007/s10549-010-1202-7

    Article  CAS  PubMed  Google Scholar 

  16. Stål O, Sullivan S, Sun XF, Wingren S, Nordenskjöld B (1994) Simultaneous analysis of c-erbB-2 expression and DNA content in breast cancer using flow cytometry. Cytometry 16(2):160–168. doi:10.1002/cyto.990160210

    Article  PubMed  Google Scholar 

  17. Gunnarsson C, Ahnström M, Kirschner K, Olsson B, Nordenskjöld B, Rutqvist LE, Skoog L, Stål O (2003) Amplification of HSD17B1 and ERBB2 in primary breast cancer. Oncogene 22(1):34–40. doi:10.1038/sj.onc.1206078

    Article  CAS  PubMed  Google Scholar 

  18. Stål O, Sullivan S, Wingren S, Skoog L, Rutqvist LE, Carstensen JM, Nordenskjöld B (1995) c-erbB-2 expression and benefit from adjuvant chemotherapy and radiotherapy of breast cancer. Eur J Cancer 31A(13–14):2185–2190

    Article  PubMed  Google Scholar 

  19. Perez-Tenorio G, Alkhori L, Olsson B, Waltersson MA, Nordenskjöld B, Rutqvist LE, Skoog L, Stål O (2007) PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res 13(12):3577–3584. doi:10.1158/1078-0432.CCR-06-1609

    Article  CAS  PubMed  Google Scholar 

  20. Stål O, Perez-Tenorio G, Åkerberg L, Olsson B, Nordenskjöld B, Skoog L, Rutqvist LE (2003) Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res 5(2):R37–R44

    Article  PubMed Central  PubMed  Google Scholar 

  21. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747. doi:10.1093/annonc/mdr304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dube N, Tremblay ML (2005) Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. Biochim Biophys Acta 1754(1–2):108–117. doi:10.1016/j.bbapap.2005.07.030

    Article  CAS  PubMed  Google Scholar 

  23. Cool DE, Tonks NK, Charbonneau H, Walsh KA, Fischer EH, Krebs EG (1989) cDNA isolated from a human T-cell library encodes a member of the protein-tyrosine-phosphatase family. Proc Natl Acad Sci USA 86(14):5257–5261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Johnson CV, Cool DE, Glaccum MB, Green N, Fischer EH, Bruskin A, Hill DE, Lawrence JB (1993) Isolation and mapping of human T-cell protein tyrosine phosphatase sequences: localization of genes and pseudogenes discriminated using fluorescence hybridization with genomic versus cDNA probes. Genomics 16(3):619–629. doi:10.1006/geno.1993.1239

    Article  CAS  PubMed  Google Scholar 

  25. Sakaguchi AY, Sylvia VL, Martinez L, Smith EA, Han ES, Lalley PA, Shows TB, Choudhury GG (1992) Assignment of tyrosine-specific T-cell phosphatase to conserved syntenic groups on human chromosome 18 and mouse chromosome 18. Genomics 12(1):151–154

    Article  CAS  PubMed  Google Scholar 

  26. Bussieres-Marmen S, Hutchins AP, Schirbel A, Rebert N, Tiganis T, Fiocchi C, Miranda-Saavedra D, Tremblay ML (2014) Characterization of PTPN2 and its use as a biomarker. Methods 65(2):239–246. doi:10.1016/j.ymeth.2013.08.020

    Article  CAS  PubMed  Google Scholar 

  27. Galic S, Hauser C, Kahn BB, Haj FG, Neel BG, Tonks NK, Tiganis T (2005) Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol 25(2):819–829. doi:10.1128/MCB.25.2.819-829.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, Tonks NK, Tiganis T (2003) Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol 23(6):2096–2108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mattila E, Auvinen K, Salmi M, Ivaska J (2008) The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J Cell Sci 121(Pt 21):3570–3580. doi:10.1242/jcs.031898

    Article  CAS  PubMed  Google Scholar 

  30. Omerovic J, Clague MJ, Prior IA (2010) Phosphatome profiling reveals PTPN2, PTPRJ and PTEN as potent negative regulators of PKB/Akt activation in Ras-mutated cancer cells. Biochem J 426(1):65–72. doi:10.1042/BJ20091413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Tiganis T, Bennett AM, Ravichandran KS, Tonks NK (1998) Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol Cell Biol 18(3):1622–1634

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Scharl M, McCole DF, Weber A, Vavricka SR, Frei P, Kellermeier S, Pesch T, Fried M, Rogler G (2011) Protein tyrosine phosphatase N2 regulates TNFalpha-induced signalling and cytokine secretion in human intestinal epithelial cells. Gut 60(2):189–197. doi:10.1136/gut.2010.216606

    Article  CAS  PubMed  Google Scholar 

  33. Scharl M, Rudenko I, McCole DF (2010) Loss of protein tyrosine phosphatase N2 potentiates epidermal growth factor suppression of intestinal epithelial chloride secretion. Am J Physiol Gastrointest Liver Physiol 299(4):G935–G945. doi:10.1152/ajpgi.00106.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Tiganis T (2013) PTP1B and TCPTP–nonredundant phosphatases in insulin signaling and glucose homeostasis. FEBS J 280(2):445–458. doi:10.1111/j.1742-4658.2012.08563.x

    Article  CAS  PubMed  Google Scholar 

  35. Kittiniyom K, Gorse KM, Dalbegue F, Lichy JH, Taubenberger JK, Newsham IF (2001) Allelic loss on chromosome band 18p11.3 occurs early and reveals heterogeneity in breast cancer progression. Breast Cancer Res 3(3):192–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lee CF, Ling ZQ, Zhao T, Fang SH, Chang WC, Lee SC, Lee KR (2009) Genomic-wide analysis of lymphatic metastasis-associated genes in human hepatocellular carcinoma. World J Gastroenterol 15(3):356–365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kleppe M, Lahortiga I, El Chaar T, De Keersmaecker K, Mentens N, Graux C, Van Roosbroeck K, Ferrando AA, Langerak AW, Meijerink JP, Sigaux F, Haferlach T, Wlodarska I, Vandenberghe P, Soulier J, Cools J (2010) Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat Genet 42(6):530–535. doi:10.1038/ng.587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kleppe M, Soulier J, Asnafi V, Mentens N, Hornakova T, Knoops L, Constantinescu S, Sigaux F, Meijerink JP, Vandenberghe P, Tartaglia M, Foa R, Macintyre E, Haferlach T, Cools J (2011) PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. Blood 117(26):7090–7098. doi:10.1182/blood-2010-10-314286

    Article  CAS  PubMed  Google Scholar 

  39. Kleppe M, Tousseyn T, Geissinger E, Kalender Atak Z, Aerts S, Rosenwald A, Wlodarska I, Cools J (2011) Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin’s lymphoma and T-cell non-Hodgkin’s lymphoma. Haematologica 96(11):1723–1727. doi:10.3324/haematol.2011.041921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Shields BJ, Court NW, Hauser C, Bukczynska PE, Tiganis T (2008) Cell cycle-dependent regulation of SFK, JAK1 and STAT3 signalling by the protein tyrosine phosphatase TCPTP. Cell Cycle 7(21):3405–3416

    Article  CAS  PubMed  Google Scholar 

  41. Shields BJ, Wiede F, Gurzov EN, Wee K, Hauser C, Zhu HJ, Molloy TJ, O’Toole SA, Daly RJ, Sutherland RL, Mitchell CA, McLean CA, Tiganis T (2013) TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers. Mol Cell Biol 33(3):557–570. doi:10.1128/MCB.01016-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Beelen K, Zwart W, Linn SC (2012) Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy? Nat Rev Clin Oncol 9(9):529–541. doi:10.1038/nrclinonc.2012.121

    Article  CAS  PubMed  Google Scholar 

  43. Droog M, Beelen K, Linn S, Zwart W (2013) Tamoxifen resistance: from bench to bedside. Eur J Pharmacol 717(1–3):47–57. doi:10.1016/j.ejphar.2012.11.071

    Article  CAS  PubMed  Google Scholar 

  44. Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10(1 Pt 2):331S–336S

    Article  CAS  PubMed  Google Scholar 

  45. Beelen K, Opdam M, Severson TM, Koornstra RH, Vincent AD, Wesseling J, Muris JJ, Berns EM, Vermorken JB, van Diest PJ, Linn SC (2014) PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2 and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. Breast Cancer Res 16(1):R13. doi:10.1186/bcr3606

    Article  PubMed Central  PubMed  Google Scholar 

  46. Beelen K, Opdam M, Severson TM, Koornstra RH, Vincent AD, Wesseling J, Muris JJ, Berns EM, Vermorken JB, van Diest PJ, Linn SC (2014) Phosphorylated p-70S6K predicts tamoxifen resistance in postmenopausal breast cancer patients randomized between adjuvant tamoxifen versus no systemic treatment. Breast Cancer Res 16(1):R6. doi:10.1186/bcr3598

    Article  PubMed Central  PubMed  Google Scholar 

  47. Bostner J, Ahnström Waltersson M, Fornander T, Skoog L, Nordenskjöld B, Stål O (2007) Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer. Oncogene 26(49):6997–7005. doi:10.1038/sj.onc.1210506

    Article  CAS  PubMed  Google Scholar 

  48. Bostner J, Karlsson E, Pandiyan MJ, Westman H, Skoog L, Fornander T, Nordenskjöld B, Stål O (2013) Activation of Akt, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res Treat 137(2):397–406. doi:10.1007/s10549-012-2376-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Karlsson E, Perez-Tenorio G, Amin R, Bostner J, Skoog L, Fornander T, Sgroi DC, Nordenskjöld B, Hallbeck AL, Stål O (2013) The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res 15(5):R96. doi:10.1186/bcr3557

    Article  PubMed Central  PubMed  Google Scholar 

  50. Perez-Tenorio G, Stål O, Southeast Sweden Breast Cancer G (2002) Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. Br J Cancer 86(4):540–545. doi:10.1038/sj.bjc.6600126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Mattila E, Marttila H, Sahlberg N, Kohonen P, Tahtinen S, Halonen P, Perala M, Ivaska J (2010) Inhibition of receptor tyrosine kinase signalling by small molecule agonist of T-cell protein tyrosine phosphatase. BMC Cancer 10:7. doi:10.1186/1471-2407-10-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Tiganis T (2002) Protein tyrosine phosphatases: dephosphorylating the epidermal growth factor receptor. IUBMB Life 53(1):3–14. doi:10.1080/15216540210811

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from The Swedish Cancer Society (#13 0435) and The Swedish Research Council (A0346701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olle Stål.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of Sweden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlsson, E., Veenstra, C., Emin, S. et al. Loss of protein tyrosine phosphatase, non-receptor type 2 is associated with activation of AKT and tamoxifen resistance in breast cancer. Breast Cancer Res Treat 153, 31–40 (2015). https://doi.org/10.1007/s10549-015-3516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3516-y

Keywords

Navigation