Skip to main content

Advertisement

Log in

Bone cancer incidence by morphological subtype: a global assessment

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

To better understand the relevance of environmental factors to the changing patterns of bone cancer subtypes, we examine the incidence of osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) using data from cancer incidence in five continents.

Methods

Age-specific and age-standardized incidence rates (ASRs) per 100,000 person-years were computed and stratified by country (n = 43), subtype, and sex during 2003–2007. Temporal patterns of ASRs were examined during 1988–2007 (12 countries). Age–period–cohort models were fitted for the USA and UK by subtype.

Results

For most countries, OS represented 20–40 % of all bone cancers, ES < 20 %, while CS proportions varied more considerably. Overall ASRs of bone cancers were 0.8–1.2/100,000 in men and 0.5–1.0 in women (0.20–0.35/100,000 for OS and 0.10–0.30/100,000 for CS in both men and women, and <0.10–0.25/100,000 in men and 0.05–0.25/100,000 in women for ES). The age-specific incidence rates revealed a bimodal peak of OS, one peak of ES in childhood, and a more heterogeneous pattern for CS. The overall bone cancer incidence trends are generally flat, but more heterogeneous for ES and CS. A declining OS incidence was observed in the UK and USA (men), an increase in CS in the UK and USA (female), and an apparent increase in ES, followed by a leveling off in successive US and UK cohorts.

Conclusion

Monitoring bone cancer incidence trends with data assembled from a geographically broader range of registries may generate hypotheses about additional risk factors and ensure that high-risk populations are not overlooked in cancer control efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. International Agency for Research on Cancer (2013) Cancer incidence in five continents, volume X (electronic version). In: Forman D, Bray F, Brewster D, Mbalawa CG, Kohler B, Piñeros M, Steliarova-Foucher E, Swaminathan R, Ferlay J (eds). IARC, Lyon http://ci5.iarc.fr. Accessed 10 Jan 2014

  2. Miller RW, Boice JD, Curtis RE (2006) Cancer epidemiology and prevention. In: Schottenfeld D, Fraumeni FJ (eds) Cancer epidemiology and prevention, 3rd edn. Oxford University Press, New York, pp 946–958

    Chapter  Google Scholar 

  3. Le Vu B, de Vathaire F, Shamsaldin A et al (1998) Radiation dose, chemotherapy and risk of osteosarcoma after solid tumours during childhood. Int J Cancer 77:370–377

    Article  PubMed  Google Scholar 

  4. Hawkins MM, Wilson LM, Burton HS et al (1996) Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J Natl Cancer Inst 88:270–278

    Article  CAS  PubMed  Google Scholar 

  5. Finkelstein MM, Kreiger N (1996) Radium in drinking water and risk of bone cancer in Ontario youths: a second study and combined analysis. Occup Environ Med 53:305–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hum L, Kreiger N, Finkelstein MM (1998) The relationship between parental occupation and bone cancer risk in offspring. Int J Epidemiol 27:766–771

    Article  CAS  PubMed  Google Scholar 

  7. Troisi R, Masters MN, Joshipura K, Douglass C, Cole BF, Hoover RN, The National Osteosarcoma Etiology Group (2006) Perinatal factors, growth and development, and osteosarcoma risk. Br J Cancer 95:1603–1607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mirabello L, Pfeiffer R, Murphy G, Daw NC, Patino-Garcia A, Troisi RJ, Hoover RN, Douglass C, Schuz J, Craft AW, Savage SA (2011) Height at diagnosis and birth-weight as risk factors for osteosarcoma. Cancer Causes Control 22:899–908

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bassin EB, Wypij D, Davis RB, Mittleman MA (2006) Age-specific fluoride exposure in drinking water and osteosarcoma (United States). Cancer Causes Control 17:421–428

    Article  PubMed  Google Scholar 

  10. Blakey K, Feltbower RG, Parslow RC, James PW, Gomez Pozo B, Stiller C, Vincent TJ, Norman P, McKinney PA, Murphy MF, Craft AW, McNally RJ (2014) Is fluoride a risk factor for bone cancer? Small area analysis of osteosarcoma and Ewing sarcoma diagnosed among 0–49-year-olds in Great Britain, 1980–2005. Int J Epidemiol 43:224–234

    Article  PubMed Central  PubMed  Google Scholar 

  11. Moore LE, Gold L, Stewart PA, Gridley G, Prince JR, Zahm SH (2005) Parental occupational exposures and Ewing’s sarcoma. Int J Cancer 114:472–478

    Article  CAS  PubMed  Google Scholar 

  12. Valery P, McWhirter W, Sleigh A, Williams G, Bain C (2002) Farm exposures, parental occupation and risk of Ewing’s sarcoma in Australia: a national case-control study. Cancer Causes Control 13:263–270

    Article  PubMed  Google Scholar 

  13. Holly EA, Aston DA, Ann DK, Kristiansen JJ (1992) Ewing’s bone sarcoma, paternal occupational exposure, and other factors. Am J Epidemiol 135(2):122–129

  14. Winn DM, Li FP, Robison LL, Mulvihill JJ, Daigle AE, Fraumeni JF Jr (1992) A case-control study of the etiology of Ewing’s sarcoma. Cancer Epidemiol Biomarkers Prev 1:525–532

    CAS  PubMed  Google Scholar 

  15. Valery PC, Holly EA, Sleigh AC, Williams G, Kreiger N, Bain C (2005) Hernias and Ewing’s sarcoma family of tumours: a pooled analysis and meta-analysis. Lancet Oncol 6:485–490

    Article  PubMed  Google Scholar 

  16. Bovee JV, Hogendoorn PC, Wunder JS, Alman BA (2010) Cartilage tumours and bone development: molecular pathology and possible therapeutic targets. Nat Rev Cancer 10:481–488

    Article  CAS  PubMed  Google Scholar 

  17. Savage SA, Burdett L, Troisi R, Douglass C, Hoover RN, Chanock SJ (2007) Germ-line genetic variation of TP53 in osteosarcoma. Pediatr Blood Cancer 49:28–33

    Article  PubMed  Google Scholar 

  18. Savage SA, Woodson K, Walk E et al (2007) Analysis of genes critical for growth regulation identifies insulin-like Growth Factor 2 Receptor variations with possible functional significance as risk factors for osteosarcoma. Cancer Epidemiol Biomarkers Prev 16:1667–1674

    Article  CAS  PubMed  Google Scholar 

  19. Savage SA, Mirabello L, Wang Z et al (2013) Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat Genet 45:799–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Liu Y, He Z, Feng D, Shi G, Gao R, Wu X, Song W, Yuan W (2011) Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to osteosarcoma. DNA Cell Biol 30:1051–1055

    Article  CAS  PubMed  Google Scholar 

  21. Ottaviani G, Jaffe N (2009) The etiology of osteosarcoma. Cancer Treat Res 152:15–32

    Article  PubMed  Google Scholar 

  22. Wang Q, Lei C, Wan H, Liu Q (2012) Improved cellular immune response elicited by a ubiquitin-fused DNA vaccine against Mycobacterium tuberculosis. DNA Cell Biol 31:489–495

    Article  CAS  PubMed  Google Scholar 

  23. Silva DS, Sawitzki FR, De Toni EC, Graebin P, Picanco JB, Abujamra AL, de Farias CB, Roesler R, Brunetto AL, Alho CS (2012) Ewing’s sarcoma: analysis of single nucleotide polymorphism in the EWS gene. Gene 509:263–266

    Article  CAS  PubMed  Google Scholar 

  24. World Health Organization (2000) International classification of diseases for oncology (ICD-0), 3rd ed. In: Fritz A, Percy C, Jack A, Shanmugaratnam K, Sobin L, Parkin DM, Whelan S (eds). World Health Organization, Geneva

  25. Segi M (1960) Cancer mortality for selected sites in 24 countries (1950–57). In: Department of Public Health. Tohoku University of Medicine, Sendai, Japan

  26. Parkin DM, Whelan SL, Ferlay J, Raymond L, Young J (eds) (1997) Cancer incidence in five continents, vol. VII (IARC Scientific Publications, No. 143). IARC, Lyon, France

  27. Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB (eds) (2002) Cancer incidence in five continents, vol. VIII (IARC Scientific Publications, No. 155). IARC, Lyon, France

  28. Curado MP, Edwards B, Shin HR, Storm H, Ferlay J, Heanue M, Boyle P (eds) (2007) Cancer incidence in five continents, vol. IX (IARC Scientific Publications, No. 160). IARC, Lyon, France

  29. Clayton D, Schifflers E (1987) Models for temporal variation in cancer rates. I: age-period and age-cohort models. Stat Med 6:449–467

    Article  CAS  PubMed  Google Scholar 

  30. Clayton D, Schifflers E (1987) Models for temporal variation in cancer rates. II: age-cohort models. Stat Med 6:469–481

    Article  CAS  PubMed  Google Scholar 

  31. StataCorp (2011) Stata statistical software: release 12. StataCorp LP, College Station

    Google Scholar 

  32. Anfinsen KP, Devesa SS, Bray F, Troisi R, Jonasdottir TJ, Bruland OS, Grotmol T (2011) Age-period-cohort analysis of primary bone cancer incidence rates in the United States (1976–2005). Cancer Epidemiol Biomarkers Prev 20:1770–1777

    Article  PubMed  Google Scholar 

  33. Cavelaars AE, Kunst AE, Geurts JJ, Crialesi R, Grotvedt L, Helmert U, Lahelma E, Lundberg O, Mielck A, Rasmussen NK, Regidor E, Spuhler T, Mackenbach JP (2000) Persistent variations in average height between countries and between socio-economic groups: an overview of 10 European countries. Ann Hum Biol 27:407–421

    Article  CAS  PubMed  Google Scholar 

  34. Huvos AG (1986) Osteogenic sarcoma of bones and soft tissues in older persons. A clinicopathologic analysis of 117 patients older than 60 years. Cancer 57:1442–1449

    Article  CAS  PubMed  Google Scholar 

  35. Mirabello L, Troisi RJ, Savage SA (2009) Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer 115:1531–1543

    Article  PubMed Central  PubMed  Google Scholar 

  36. Corral-Gudino L, Borao-Cengotita-Bengoa M, Del Pino-Montes J, Ralston S (2013) Epidemiology of Paget’s disease of bone: a systematic review and meta-analysis of secular changes. Bone 55:347–352

    Article  PubMed  Google Scholar 

  37. Wang WC, Cheng YS, Chen CH, Lin YJ, Chen YK, Lin LM (2005) Paget’s disease of bone in a Chinese patient: a case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99:727–733

    Article  PubMed  Google Scholar 

  38. Okada K, Hasegawa T, Nishida J, Ogose A, Tajino T, Osanai T, Yanagisawa M, Hatori M (2004) Osteosarcomas after the age of 50: a clinicopathologic study of 64 cases—an experience in northern Japan. Ann Surg Oncol 11:998–1004

    Article  PubMed  Google Scholar 

  39. McKusick VA (1994) Medical genetics at Johns Hopkins: past, present and future, 11th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  40. Gardner M, Guyer P, Barker D (1978) Radiological prevalence of Paget’s disease of bone in British migrants to Australia. Br Med J 1:1655–1657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Armstrong G, Stovallb M, Robinson L (2010) Long-term effects of radiation exposure among adult survivors of childhood cancer: results from the childhood cancer survivor study. Radiat Res 174:840–850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kumar S (2012) Second malignant neoplasms following radiotherapy. Int J Environ Res Public Health 9:4744–4759

    Article  PubMed Central  PubMed  Google Scholar 

  43. Palumbo A, Bringhen S, Kumar SK, Lupparelli G, Usmani S, Waage A, Larocca A, van der Holt B, Musto P, Offidani M, Petrucci MT, Evangelista A, Zweegman S, Nooka AK, Spencer A, Dimopoulos MA, Hajek R, Cavo M, Richardson P, Lonial S, Ciccone G, Boccadoro M, Anderson K, Barlogie B, Sonneveld P, McCarthy PL (2014) Second primary malignancies with lenalidomide therapy for newly diagnosed myeloma: a meta-analysis of individual patient data. Lancet Oncol 15:333–342

    Article  CAS  PubMed  Google Scholar 

  44. Egas-Bejar D, Huh W (2014) Rhabdomyosarcoma in adolescent and young adult patients: current perspectives. Adolesc Health Med Ther 5:115–125

    PubMed Central  PubMed  Google Scholar 

  45. Inskip P, Robison L, Stovall M, Smith S, Hammond S, Mertens A, Whitton J, Diller L, Kenney L, Neglia J (2009) Radiation dose and breast cancer risk in the childhood cancer survivor study. J Clin Oncol 27:3901–3907

    Article  PubMed Central  PubMed  Google Scholar 

  46. Chung K, Keating N, Yock T, Tarbell N (2008) Comparative analysis of second malignancy risk in patients treated with proton therapy versus conventional photon therapy. Int J Radiat Oncol Biol Phys 72:S8

    Article  Google Scholar 

  47. Kozak K, Adams J, Krejcarek S, Tarbell N, Yock T (2009) A dosimetric comparison of proton and intensity-modulated photon radiotherapy for pediatric parameningeal rhabdomyosarcomas. Int J Radiat Oncol Biol Phys 74(1):179–186

  48. MacDonald S, Safai S, Trofimov A, Wolfgang J, Fullerton B, Yeap B, Bortfeld T, Tarbell N, Yock T (2008) Proton radiotherapy for childhood ependymoma: initial clinical outcomes and dose comparisons. Int J Radiat Oncol Biol Phys 71:979–986

    Article  PubMed  Google Scholar 

  49. Mirabello L, Troisi RJ, Savage SA (2009) International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer 125:229–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Bovee JV, Cleton-Jansen AM, Taminiau AH, Hogendoorn PC (2005) Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol 6:599–607

    Article  CAS  PubMed  Google Scholar 

  51. Meijer D, Gelderblom H, Karperien M, Cleton-Jansen AM, Hogendoorn PC, Bovee JV (2011) Expression of aromatase and estrogen receptor alpha in chondrosarcoma, but no beneficial effect of inhibiting estrogen signaling both in vitro and in vivo. Clin Sarcoma Res 1:5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Bray F, Znaor A, Cueva P, Korir A, Swaminathan R, Ullrich A, Wand S, Parkin D (2014) Quality control at the population-based cancer registry. In: Planning and developing population-based cancer registration in low- and middle-income settings (IARC Technical Publication no. 43). International Agency for Research on Cancer (IARC), Lyon, France, pp 21–26

Download references

Acknowledgments

PCV was supported by an Australian Research Council Future Fellowship (#FT100100511).

Conflict of interest

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia C. Valery.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valery, P.C., Laversanne, M. & Bray, F. Bone cancer incidence by morphological subtype: a global assessment. Cancer Causes Control 26, 1127–1139 (2015). https://doi.org/10.1007/s10552-015-0607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-015-0607-3

Keywords

Navigation