Skip to main content

Advertisement

Log in

Antibody-based imaging strategies for cancer

  • CLINICAL
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Although mainly developed for preclinical research and therapeutic use, antibodies have high antigen specificity, which can be used as a courier to selectively deliver a diagnostic probe or therapeutic agent to cancer. It is generally accepted that the optimal antigen for imaging will depend on both the expression in the tumor relative to normal tissue and the homogeneity of expression throughout the tumor mass and between patients. For the purpose of diagnostic imaging, novel antibodies can be developed to target antigens for disease detection, or current FDA-approved antibodies can be repurposed with the covalent addition of an imaging probe. Reuse of therapeutic antibodies for diagnostic purposes reduces translational costs since the safety profile of the antibody is well defined and the agent is already available under conditions suitable for human use. In this review, we will explore a wide range of antibodies and imaging modalities that are being translated to the clinic for cancer identification and surgical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sliwkowski, M. X., & Mellman, I. (2013). Antibody therapeutics in cancer. Science, 341(6151), 1192–1198. doi:10.1126/science.1241145341/6151/1192.

    CAS  PubMed  Google Scholar 

  2. LoRusso, P. M., Weiss, D., Guardino, E., Girish, S., & Sliwkowski, M. X. (2011). Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clinical Cancer Research, 17(20), 6437–6447. doi:10.1158/1078-0432.Ccr-11-0762.

    CAS  PubMed  Google Scholar 

  3. Sampath, L., Kwon, S., Ke, S., Wang, W., Schiff, R., Mawad, M. E., et al. (2007). Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. Journal of Nuclear Medicine, 48(9), 1501–1510. doi:10.2967/jnumed.107.042234.

    CAS  PubMed  Google Scholar 

  4. Peng, X. H., Qian, X. M., Mao, H., Wang, A. Y., Chen, Z., Nie, S. M., et al. (2008). Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, 3(3), 311–321.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. van Dam, G. M., Themelis, G., Crane, L. M., Harlaar, N. J., Pleijhuis, R. G., Kelder, W., et al. (2011). Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nature Medicine, 17(10), 1315–1319. doi:10.1038/nm.2472nm.2472.

    PubMed  Google Scholar 

  6. Korb, M. L., Hartman, Y. E., Kovar, J., Zinn, K. R., Bland, K. I., & Rosenthal, E. L. (2013). Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer. Journal of Surgical Research. doi:10.1016/j.jss.2013.11.1089.

    Google Scholar 

  7. van Scheltinga, A. G. T. T., van Dam, G. M., Nagengast, W. B., Ntziachristos, V., Hollema, H., Herek, J. L., et al. (2011). Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. Journal of Nuclear Medicine, 52(11), 1778–1785. doi:10.2967/Jnumed.111.092833.

    Google Scholar 

  8. Byrne, W. L., DeLille, A., Kuo, C., de Jong, J. S., van Dam, G. M., Francis, K. P., et al. (2013). Use of optical imaging to progress novel therapeutics to the clinic. Journal of Controlled Release, 172(2), 523–534. doi:10.1016/j.jconrel.2013.05.004S0168-3659(13)00250-2.

    CAS  PubMed  Google Scholar 

  9. van der Vorst, J. R., Schaafsma, B. E., Verbeek, F. P., Keereweer, S., Jansen, J. C., van der Velden, L. A., et al. (2013). Near-infrared fluorescence sentinel lymph node mapping of the oral cavity in head and neck cancer patients. Oral Oncology, 49(1), 15–19. doi:10.1016/j.oraloncology.2012.07.017S1368-8375(12)00245-X.

    PubMed Central  PubMed  Google Scholar 

  10. Alberti, C. (2012). From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. European Review for Medical and Pharmacological Sciences, 16(14), 1925–1933.

    CAS  PubMed  Google Scholar 

  11. Bai, M., & Bornhop, D. J. (2012). Recent advances in receptor-targeted fluorescent probes for in vivo cancer imaging. Current Medicinal Chemistry, 19(28), 4742–4758.

    CAS  PubMed  Google Scholar 

  12. Bremer, C., Ntziachristos, V., & Weissleder, R. (2003). Optical-based molecular imaging: contrast agents and potential medical applications. European Radiology, 13(2), 231–243. doi:10.1007/s00330-002-1610-0.

    PubMed  Google Scholar 

  13. Du, W., Wang, Y., Luo, Q. M., & Liu, B. F. (2006). Optical molecular imaging for systems biology: from molecule to organism. Analytical and Bioanalytical Chemistry, 386(3), 444–457. doi:10.1007/S00216-006-0541-Z.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hoppin, J., Orcutt, K. D., Hesterman, J. Y., Silva, M. D., Cheng, D., Lackas, C., et al. (2011). Assessing antibody pharmacokinetics in mice with in vivo imaging. Journal of Pharmacology and Experimental Therapeutics, 337(2), 350–358. doi:10.1124/jpet.110.172916jpet.110.172916.

    CAS  PubMed  Google Scholar 

  15. Liu, Y., Yu, G., Tian, M., & Zhang, H. (2011). Optical probes and the applications in multimodality imaging. Contrast Media & Molecular Imaging, 6(4), 169–177. doi:10.1002/cmmi.428.

    CAS  Google Scholar 

  16. Ntziachristos, V., Bremer, C., & Weissleder, R. (2003). Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. European Radiology, 13(1), 195–208. doi:10.1007/S00330-002-1524-X.

    PubMed  Google Scholar 

  17. Ripoll, J., Ntziachristos, V., Cannet, C., Babin, A. L., Kneuer, R., Gremlich, H. U., et al. (2008). Investigating pharmacology in vivo using magnetic resonance and optical imaging. Drugs in R&D, 9(5), 277–306. doi:10.2165/00126839-200809050-00001.

    CAS  Google Scholar 

  18. Sokolov, K., Nida, D., Descour, M., Lacy, A., Levy, M., Hall, B., et al. (2007). Molecular optical imaging of therapeutic targets of cancer. Advances in Cancer Research, 96(96), 299–344. doi:10.1016/S0065-230x(06)96011-4.

    CAS  PubMed  Google Scholar 

  19. Schaafsma, B. E., van der Vorst, J. R., Gaarenstroom, K. N., Peters, A. A., Verbeek, F. P., de Kroon, C. D., et al. (2012). Randomized comparison of near-infrared fluorescence lymphatic tracers for sentinel lymph node mapping of cervical cancer. Gynecologic Oncology, 127(1), 126–130. doi:10.1016/j.ygyno.2012.07.002S0090-8258(12)00496-9.

    PubMed Central  PubMed  Google Scholar 

  20. van der Vorst, J. R., Schaafsma, B. E., Verbeek, F. P., Hutteman, M., Mieog, J. S., Lowik, C. W., et al. (2012). Randomized comparison of near-infrared fluorescence imaging using indocyanine green and 99(m) technetium with or without patent blue for the sentinel lymph node procedure in breast cancer patients. Annals of Surgical Oncology, 19(13), 4104–4111. doi:10.1245/s10434-012-2466-4.

    PubMed Central  PubMed  Google Scholar 

  21. van der Vorst, J. R., Schaafsma, B. E., Verbeek, F. P., Swijnenburg, R. J., Hutteman, M., Liefers, G. J., et al. (2013). Dose optimization for near-infrared fluorescence sentinel lymph node mapping in patients with melanoma. British Journal of Dermatology, 168(1), 93–98. doi:10.1111/bjd.12059.

    PubMed Central  PubMed  Google Scholar 

  22. Verbeek, F. P., Troyan, S. L., Mieog, J. S., Liefers, G. J., Moffitt, L. A., Rosenberg, M., et al. (2014). Near-infrared fluorescence sentinel lymph node mapping in breast cancer: a multicenter experience. Breast Cancer Research and Treatment, 143(2), 333–342. doi:10.1007/s10549-013-2802-9.

    PubMed  Google Scholar 

  23. Beer, A. J., & Schwaiger, M. (2008). Imaging of integrin alphavbeta3 expression. Cancer and Metastasis Reviews, 27(4), 631–644. doi:10.1007/s10555-008-9158-3.

    CAS  PubMed  Google Scholar 

  24. Ye, Y., & Chen, X. (2011). Integrin targeting for tumor optical imaging. Theranostics, 1, 102–126.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Faust, A., Waschkau, B., Waldeck, J., Holtke, C., Breyholz, H. J., Wagner, S., et al. (2009). Synthesis and evaluation of a novel hydroxamate based fluorescent photoprobe for imaging of matrix metalloproteinases. Bioconjugate Chemistry, 20(5), 904–912. doi:10.1021/bc8004478.

    CAS  PubMed  Google Scholar 

  26. Sheth, R. A., Kunin, A., Stangenberg, L., Sinnamon, M., Hung, K. E., Kucherlapati, R., et al. (2012). In vivo optical molecular imaging of matrix metalloproteinase activity following celecoxib therapy for colorectal cancer. Molecular Imaging, 11(5), 417–425.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. van Dongen, G. A., Visser, G. W., Lub-de Hooge, M. N., de Vries, E. G., & Perk, L. R. (2007). Immuno-PET: a navigator in monoclonal antibody development and applications. The Oncologist, 12(12), 1379–1389. doi:10.1634/theoncologist.12-12-137912/12/1379.

    PubMed  Google Scholar 

  28. Kaur, S., Venktaraman, G., Jain, M., Senapati, S., Garg, P. K., & Batra, S. K. (2012). Recent trends in antibody-based oncologic imaging. Cancer Letters, 315(2), 97–111. doi:10.1016/j.canlet.2011.10.017S0304-3835(11)00634-3.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Stummer, W., Pichlmeier, U., Meinel, T., Wiestler, O. D., Zanella, F., & Reulen, H. J. (2006). Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncology, 7(5), 392–401. doi:10.1016/s1470-2045(06)70665-9.

    CAS  PubMed  Google Scholar 

  30. Ishizawa, T., Fukushima, N., Shibahara, J., Masuda, K., Tamura, S., Aoki, T., et al. (2009). Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer, 115(11), 2491–2504. doi:10.1002/cncr.24291.

    PubMed  Google Scholar 

  31. Mieog, J. S., Hutteman, M., van der Vorst, J. R., Kuppen, P. J., Que, I., Dijkstra, J., et al. (2011). Image-guided tumor resection using real-time near-infrared fluorescence in a syngeneic rat model of primary breast cancer. Breast Cancer Research and Treatment, 128(3), 679–689. doi:10.1007/s10549-010-1130-6.

    PubMed  Google Scholar 

  32. Pleijhuis, R. G., Graafland, M., de Vries, J., Bart, J., de Jong, J. S., & van Dam, G. M. (2009). Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Annals of Surgical Oncology, 16(10), 2717–2730. doi:10.1245/s10434-009-0609-z.

    PubMed Central  PubMed  Google Scholar 

  33. Van Terwisscha Scheltinga, A. G. T., Van Dam, G. M., Nagengast, W. B., Ntziachristos, V., Hollema, H., Herek, J. L., et al. (2011). Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. Journal of Nuclear Medicine, 52(11), 1778–1785.

    Google Scholar 

  34. Korb, M. L., Hartman, Y. E., Kovar, J., Zinn, K. R., Bland, K. I., & Rosenthal, E. L. (2014). Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer. Journal of Surgical Research, 188(1), 119–128.

    CAS  PubMed  Google Scholar 

  35. Day, K. E., Sweeny, L., Kulbersh, B., Zinn, K. R., & Rosenthal, E. L. (2013). Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Molecular Imaging and Biology, 15(6), 722–729.

    PubMed Central  PubMed  Google Scholar 

  36. Heath, C. H., Deep, N. L., Sweeny, L., Zinn, K. R., & Rosenthal, E. L. (2012). Use of panitumumab-IRDye800 to image microscopic head and neck cancer in an orthotopic surgical model. Annals of Surgical Oncology, 19(12), 3879–3887. doi:10.1245/s10434-012-2435-y.

    PubMed Central  PubMed  Google Scholar 

  37. Wu, A. M. (2014). Engineered antibodies for molecular imaging of cancer. Methods, 65(1), 139–147. doi:10.1016/j.ymeth.2013.09.015S1046-2023(13)00384-8.

    CAS  PubMed  Google Scholar 

  38. Agdeppa, E. D., & Spilker, M. E. (2009). A review of imaging agent development. AAPS Journal, 11(2), 286–299. doi:10.1208/S12248-009-9104-5.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Scheuer, W., van Dam, G. M., Dobosz, M., Schwaiger, M., & Ntziachristos, V. (2012). Drug-based optical agents: infiltrating clinics at lower risk. Science Translational Medicine, 4(134), 134ps111. doi:10.1126/scitranslmed.30035724/134/134ps11.

    Google Scholar 

  40. Lappin, G., Wagner, C. C., Langer, O., & van de Merbel, N. (2009). New ultrasensitive detection technologies and techniques for use in microdosing studies. Bioanalysis, 1(2), 357–366. doi:10.4155/Bio.09.40.

    CAS  PubMed  Google Scholar 

  41. Pauwels, E. K. J., Bergstrom, K., Mariani, G., & Kairemo, K. (2009). Microdosing, imaging biomarkers and SPECT: a multi-sided tripod to accelerate drug development. Current Pharmaceutical Design, 15(9), 928–934.

    CAS  PubMed  Google Scholar 

  42. Wagner, C. C., & Langer, O. (2011). Approaches using molecular imaging technology—use of PET in clinical microdose studies. Advanced Drug Delivery Reviews, 63(7), 539–546. doi:10.1016/J.Addr.2010.09.011.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Ferrara, K., Pollard, R., & Borden, M. (2007). Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annual Review of Biomedical Engineering, 9, 415–447. doi:10.1146/annurev.bioeng.8.061505.095852.

    CAS  PubMed  Google Scholar 

  44. Klibanov, A. L. (1999). Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Advanced Drug Delivery Reviews, 37(1–3), 139–157.

    CAS  PubMed  Google Scholar 

  45. Bachmann, C., Klibanov, A. L., Olson, T. S., Sonnenschein, J. R., Rivera-Nieves, J., Cominelli, F., et al. (2006). Targeting mucosal addressin cellular adhesion molecule (MAdCAM)-1 to noninvasively image experimental Crohn’s disease. Gastroenterology, 130(1), 8–16. doi:10.1053/j.gastro.2005.11.009.

    CAS  PubMed  Google Scholar 

  46. Ferrante, E. A., Pickard, J. E., Rychak, J., Klibanov, A., & Ley, K. (2009). Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. Journal of Controlled Release, 140(2), 100–107. doi:10.1016/j.jconrel.2009.08.001S0168-3659(09)00544-6.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kaufmann, B. A., Sanders, J. M., Davis, C., Xie, A., Aldred, P., Sarembock, I. J., et al. (2007). Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation, 116(3), 276–284. doi:10.1161/CIRCULATIONAHA.106.684738.

    CAS  PubMed  Google Scholar 

  48. Lindner, J. R., Song, J., Christiansen, J., Klibanov, A. L., Xu, F., & Ley, K. (2001). Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation, 104(17), 2107–2112.

    CAS  PubMed  Google Scholar 

  49. Warram, J. M., Sorace, A. G., Saini, R., Umphrey, H. R., Zinn, K. R., & Hoyt, K. (2011). A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. Journal of Ultrasound in Medicine, 30(7), 921–931.

    PubMed Central  PubMed  Google Scholar 

  50. Willmann, J. K., Lutz, A. M., Paulmurugan, R., Patel, M. R., Chu, P., Rosenberg, J., et al. (2008). Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology, 248(3), 936–944. doi:10.1148/radiol.2483072231248/3/936.

    PubMed Central  PubMed  Google Scholar 

  51. Deshpande, N., Pysz, M. A., & Willmann, J. K. (2010). Molecular ultrasound assessment of tumor angiogenesis. Angiogenesis, 13(2), 175–188. doi:10.1007/s10456-010-9175-z.

    PubMed Central  PubMed  Google Scholar 

  52. Kaufmann, B. A. (2009). Ultrasound molecular imaging of atherosclerosis. Cardiovascular Research, 83(4), 617–625. doi:10.1093/cvr/cvp179cvp179.

    CAS  PubMed  Google Scholar 

  53. Schumann, P. A., Christiansen, J. P., Quigley, R. M., McCreery, T. P., Sweitzer, R. H., Unger, E. C., et al. (2002). Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi. Investigative Radiology, 37(11), 587–593. doi:10.1097/01.RLI.0000031077.17751.B2.

    CAS  PubMed  Google Scholar 

  54. Sheffield, P., Trehan, A., Boyd, B., & Wong, O. L. (2008). Microbubbles as ultrasound contrast agents and in targeted drug delivery. Critical Reviews in Biomedical Engineering, 36(4), 225–255.

    PubMed  Google Scholar 

  55. Kiessling, F., Huppert, J., & Palmowski, M. (2009). Functional and molecular ultrasound imaging: concepts and contrast agents. Current Medicinal Chemistry, 16(5), 627–642.

    CAS  PubMed  Google Scholar 

  56. Saini, R., Warram, J. M., Sorace, A. G., Umphrey, H., Zinn, K. R., & Hoyt, K. (2011). Model system using controlled receptor expression for evaluating targeted ultrasound contrast agents. Ultrasound in Medicine and Biology, 37(8), 1306–1313. doi:10.1016/j.ultrasmedbio.2011.05.010S0301-5629(11)00253-5.

    PubMed Central  PubMed  Google Scholar 

  57. Hoyt, K., Sorace, A., & Saini, R. (2012). Volumetric contrast-enhanced ultrasound imaging to assess early response to apoptosis-inducing anti-death receptor 5 antibody therapy in a breast cancer animal model. Journal of Ultrasound in Medicine, 31(11), 1759–1766.

    PubMed Central  PubMed  Google Scholar 

  58. Sorace, A. G., Saini, R., Mahoney, M., & Hoyt, K. (2012). Molecular ultrasound imaging using a targeted contrast agent for assessing early tumor response to antiangiogenic therapy. Journal of Ultrasound in Medicine, 31(10), 1543–1550.

    PubMed Central  PubMed  Google Scholar 

  59. Korpanty, G., Carbon, J. G., Grayburn, P. A., Fleming, J. B., & Brekken, R. A. (2007). Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clinical Cancer Research, 13(1), 323–330. doi:10.1158/1078-0432.CCR-06-1313.

    CAS  PubMed  Google Scholar 

  60. Lyshchik, A., Fleischer, A. C., Huamani, J., Hallahan, D. E., Brissova, M., & Gore, J. C. (2007). Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. Journal of Ultrasound in Medicine, 26(11), 1575–1586.

    PubMed Central  PubMed  Google Scholar 

  61. Czarnota, G. J., Karshafian, R., Burns, P. N., Wong, S., Al Mahrouki, A., Lee, J. W., et al. (2012). Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proceedings of the National Academy of Sciences of the United States of America, 109(30), E2033–E2041. doi:10.1073/pnas.12000531091200053109.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Willmann, J. K., Paulmurugan, R., Chen, K., Gheysens, O., Rodriguez-Porcel, M., Lutz, A. M., et al. (2008). US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology, 246(2), 508–518. doi:10.1148/radiol.24620705362462070536.

    PubMed  Google Scholar 

  63. Warram, J. M., Sorace, A. G., Mahoney, M., Samuel, S., Harbin, B., Joshi, M., et al. (2014). Biodistribution of P-selectin targeted microbubbles. Journal of Drug Targeting. doi:10.3109/1061186X.2013.869822.

    PubMed  Google Scholar 

  64. Willmann, J. K., Lutz, A. M., Paulmurugan, R., Patel, M. R., Chu, P., Rosenberg, J., et al. (2008). Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology, 248(3), 936–944. doi:10.1148/radiol.2483072231.

    PubMed Central  PubMed  Google Scholar 

  65. Knowles, J. A., Heath, C. H., Saini, R., Umphrey, H., Warram, J., Hoyt, K., et al. (2012). Molecular targeting of ultrasonographic contrast agent for detection of head and neck squamous cell carcinoma. Archives of Otolaryngology - Head and Neck Surgery, 138(7), 662–668. doi:10.1001/archoto.2012.10811217425.

    PubMed Central  PubMed  Google Scholar 

  66. Warram, J. M., Sorace, A. G., Saini, R., Borovjagin, A. V., Hoyt, K., & Zinn, K. R. (2012). Systemic delivery of a breast cancer-detecting adenovirus using targeted microbubbles. Cancer Gene Therapy, 19(8), 545–552. doi:10.1038/cgt.2012.29cgt201229.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Eisenbrey, J. R., Burstein, O. M., Kambhampati, R., Forsberg, F., Liu, J. B., & Wheatley, M. A. (2010). Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. Journal of Controlled Release, 143(1), 38–44. doi:10.1016/j.jconrel.2009.12.021.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Sorace, A. G., Warram, J. M., Umphrey, H., & Hoyt, K. (2012). Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer. Journal of Drug Targeting, 20(1), 43–54. doi:10.3109/1061186X.2011.622397.

    PubMed Central  PubMed  Google Scholar 

  69. Sorace, A. G., Saini, R., Rosenthal, E., Warram, J. M., Zinn, K. R., & Hoyt, K. (2013). Optical fluorescent imaging to monitor temporal effects of microbubble-mediated ultrasound therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(2), 281–289. doi:10.1109/TUFFC.2013.2564.

    PubMed Central  PubMed  Google Scholar 

  70. Leong-Poi, H., Kuliszewski, M. A., Lekas, M., Sibbald, M., Teichert-Kuliszewska, K., Klibanov, A. L., et al. (2007). Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circulation Research, 101(3), 295–303. doi:10.1161/CIRCRESAHA.107.148676.

    CAS  PubMed  Google Scholar 

  71. Leong-Poi, H. (2012). Contrast ultrasound and targeted microbubbles: diagnostic and therapeutic applications in progressive diabetic nephropathy. Seminars in Nephrology, 32(5), 494–504. doi:10.1016/j.semnephrol.2012.07.013S0270-9295(12)00137-4.

    CAS  PubMed  Google Scholar 

  72. Rapoport, N., Gao, Z., & Kennedy, A. (2007). Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. Journal of the National Cancer Institute, 99(14), 1095–1106. doi:10.1093/jnci/djm043.

    CAS  PubMed  Google Scholar 

  73. Phillips, L. C., Klibanov, A. L., Wamhoff, B. R., & Hossack, J. A. (2010). Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery. Ultrasound in Medicine and Biology, 36(9), 1470–1480. doi:10.1016/j.ultrasmedbio.2010.06.010.

    PubMed Central  PubMed  Google Scholar 

  74. Tsutsui, J. M., Xie, F., & Porter, R. T. (2004). The use of microbubbles to target drug delivery. Cardiovascular Ultrasound, 2, 23. doi:10.1186/1476-7120-2-23.

    PubMed Central  PubMed  Google Scholar 

  75. Weinmann, H. J., Brasch, R. C., Press, W. R., & Wesbey, G. E. (1984). Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR. American Journal of Roentgenology, 142(3), 619–624. doi:10.2214/ajr.142.3.619.

    CAS  PubMed  Google Scholar 

  76. Curtet, C., Bourgoin, C., Bohy, J., Saccavini, J. C., Thedrez, P., Akoka, S., et al. (1988). Gd-25 DTPA-MAb, a potential NMR contrast agent for MRI in the xenografted nude mouse: preliminary studies. International Journal of Cancer. Supplement = Journal International du Cancer. Supplement, 2, 126–132.

    CAS  PubMed  Google Scholar 

  77. Shahbazi-Gahrouei, D. (2009). Novel MR imaging contrast agents for cancer detection. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 14(3), 141–147.

    CAS  Google Scholar 

  78. Sun, B. (1994). [Comparative studies of 111In-labeled monoclonal antibody using spacer-containing and non-spacer bifunctional chelates: (II). Biodistribution, metabolism and excretion in vivo]. [Research Support, Non-U.S. Gov’t]. Kaku igaku. The Japanese Journal of Nuclear Medicine, 31(5), 473–487.

    CAS  Google Scholar 

  79. Kuriu, Y., Otsuji, E., Kin, S., Nakase, Y., Fukuda, K., Okamoto, K., et al. (2006). Monoclonal antibody conjugated to gadolinium as a contrast agent for magnetic resonance imaging of human rectal carcinoma. Journal of Surgical Oncology, 94(2), 144–148. doi:10.1002/jso.20411.

    CAS  PubMed  Google Scholar 

  80. Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews, 53(2), 283–318.

    CAS  PubMed  Google Scholar 

  81. Kohler, N., Sun, C., Fichtenholtz, A., Gunn, J., Fang, C., & Zhang, M. (2006). Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Small, 2(6), 785–792. doi:10.1002/smll.200600009.

    CAS  PubMed  Google Scholar 

  82. Lacava, L. M., Lacava, Z. G., Da Silva, M. F., Silva, O., Chaves, S. B., Azevedo, R. B., et al. (2001). Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. [Research Support, Non-U.S. Gov’t]. Biophysical Journal, 80(5), 2483–2486. doi:10.1016/S0006-3495(01)76217-0.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Quaglia, F., Ostacolo, L., De Rosa, G., La Rotonda, M. I., Ammendola, M., Nese, G., et al. (2006). Nanoscopic core-shell drug carriers made of amphiphilic triblock and star-diblock copolymers. [Research Support, Non-U.S. Gov’t]. International Journal of Pharmaceutics, 324(1), 56–66. doi:10.1016/j.ijpharm.2006.07.020.

    CAS  PubMed  Google Scholar 

  84. Hadjipanayis, C. G., Machaidze, R., Kaluzova, M., Wang, L., Schuette, A. J., Chen, H., et al. (2010). EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cancer Research, 70(15), 6303–6312. doi:10.1158/0008-5472.CAN-10-1022.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Wei, X., Tang, H., Shang, Y. W., Li, G. H., Li, A., Wang, L., et al. (2013). [Cytotoxicity of PFOB nanoparticle coupled with ICAM-1 antibody on cardiomyocytes and its targeted adhesion to injured cardiomyocytes in vitro]. Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical Science Edition, 44(3), 342–347.

    CAS  PubMed  Google Scholar 

  86. Boswell, C. A., & Brechbiel, M. W. (2007). Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nuclear Medicine and Biology, 34(7), 757–778. doi:10.1016/j.nucmedbio.2007.04.001.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Tolmachev, V., & Stone-Elander, S. (2010). Radiolabelled proteins for positron emission tomography: pros and cons of labelling methods. Biochimica et Biophysica Acta, 1800(5), 487–510. doi:10.1016/j.bbagen.2010.02.002S0304-4165(10)00050-4.

    CAS  PubMed  Google Scholar 

  88. Perk, L. R., Vosjan, M. J., Visser, G. W., Budde, M., Jurek, P., Kiefer, G. E., et al. (2010). p-Isothiocyanatobenzyl-desferrioxamine: a new bifunctional chelate for facile radiolabeling of monoclonal antibodies with zirconium-89 for immuno-PET imaging. European Journal of Nuclear Medicine and Molecular Imaging, 37(2), 250–259. doi:10.1007/s00259-009-1263-1.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Zeglis, B. M., Sevak, K. K., Reiner, T., Mohindra, P., Carlin, S. D., Zanzonico, P., et al. (2013). A pretargeted PET imaging strategy based on bioorthogonal Diels-Alder click chemistry. Journal of Nuclear Medicine, 54(8), 1389–1396. doi:10.2967/jnumed.112.115840jnumed.112.115840.

    CAS  PubMed  Google Scholar 

  90. Borjesson, P. K., Jauw, Y. W., Boellaard, R., de Bree, R., Comans, E. F., Roos, J. C., et al. (2006). Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clinical Cancer Research, 12(7 Pt 1), 2133–2140. doi:10.1158/1078-0432.CCR-05-2137.

    PubMed  Google Scholar 

  91. Borjesson, P. K., Jauw, Y. W., de Bree, R., Roos, J. C., Castelijns, J. A., Leemans, C. R., et al. (2009). Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients. Journal of Nuclear Medicine, 50(11), 1828–1836. doi:10.2967/jnumed.109.065862jnumed.109.065862.

    PubMed  Google Scholar 

  92. Dijkers, E. C., Oude Munnink, T. H., Kosterink, J. G., Brouwers, A. H., Jager, P. L., de Jong, J. R., et al. (2010). Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clinical Pharmacology and Therapeutics, 87(5), 586–592. doi:10.1038/clpt.2010.12clpt201012.

    CAS  PubMed  Google Scholar 

  93. Divgi, C. R., Pandit-Taskar, N., Jungbluth, A. A., Reuter, V. E., Gonen, M., Ruan, S., et al. (2007). Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncology, 8(4), 304–310. doi:10.1016/S1470-2045(07)70044-X.

    CAS  PubMed  Google Scholar 

  94. Tinianow, J. N., Gill, H. S., Ogasawara, A., Flores, J. E., Vanderbilt, A. N., Luis, E., et al. (2010). Site-specifically 89Zr-labeled monoclonal antibodies for immunoPET. Nuclear Medicine and Biology, 37(3), 289–297. doi:10.1016/j.nucmedbio.2009.11.010S0969-8051(09)00291-1.

    CAS  PubMed  Google Scholar 

  95. Celli, J. P., Spring, B. Q., Rizvi, I., Evans, C. L., Samkoe, K. S., Verma, S., et al. (2010). Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chemistry Review, 110(5), 2795–2838. doi:10.1021/cr900300p.

    CAS  Google Scholar 

  96. Plaetzer, K., Krammer, B., Berlanda, J., Berr, F., & Kiesslich, T. (2009). Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers in Medical Science, 24(2), 259–268. doi:10.1007/s10103-008-0539-1.

    CAS  PubMed  Google Scholar 

  97. Fingar, V. H., Wieman, T. J., & Haydon, P. S. (1997). The effects of thrombocytopenia on vessel stasis and macromolecular leakage after photodynamic therapy using photofrin. Photochemistry and Photobiology, 66(4), 513–517.

    CAS  PubMed  Google Scholar 

  98. Fingar, V. H., Wieman, T. J., Karavolos, P. S., Doak, K. W., Ouellet, R., & Vanlier, J. E. (1993). The effects of photodynamic therapy using differently substituted zinc phthalocyanines on vessel constriction, vessel leakage and tumor response. Photochemistry and Photobiology, 58(2), 251–258. doi:10.1111/J.1751-1097.1993.Tb09557.X.

    CAS  PubMed  Google Scholar 

  99. McMahon, K. S., Wieman, T. J., Moore, P. H., & Fingar, V. H. (1994). Effects of photodynamic therapy using mono-L-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Research, 54(20), 5374–5379.

    CAS  PubMed  Google Scholar 

  100. Krosl, G., Korbelik, M., & Dougherty, G. J. (1995). Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy. British Journal of Cancer, 71(3), 549–555.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Biel, M. A. (1998). Photodynamic therapy and the treatment of head and neck neoplasia. Laryngoscope, 108(9), 1259–1268.

    CAS  PubMed  Google Scholar 

  102. Fan, K. F. M., Hopper, C., Speight, P. M., Buonaccorsi, G., MacRobert, A. J., & Bown, S. G. (1996). Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer, 78(7), 1374–1383.

    CAS  PubMed  Google Scholar 

  103. Gluckman, J. L. (1991). Hematoporphyrin photodynamic therapy—is there truly a future in head and neck oncology—reflections on a 5-year experience. Laryngoscope, 101(1), 36–42.

    CAS  PubMed  Google Scholar 

  104. Grosjean, P., Savary, J. F., Mizeret, J., Wagnieres, G., Woodtli, A., Theumann, J. F., et al. (1996). Photodynamic therapy for cancer of the upper aerodigestive tract using tetra(m-hydroxyphenyl)chlorin. Journal of Clinical Laser Medicine and Surgery, 14(5), 281–287.

    CAS  PubMed  Google Scholar 

  105. Grossweiner, L. I., Hill, J. H., & Lobraico, R. V. (1987). Photodynamic therapy of head and neck squamous cell carcinoma: optical dosimetry and clinical trial. Photochemistry and Photobiology, 46(5), 911–917.

    CAS  PubMed  Google Scholar 

  106. Keller, G. S., Doiron, D. R., & Fisher, G. U. (1985). Photodynamic therapy in otolaryngology–head and neck surgery. Archives of Otolaryngology, 111(11), 758–761.

    CAS  PubMed  Google Scholar 

  107. Savary, J. F., Monnier, P., Fontolliet, C., Mizeret, J., Wagnieres, G., Braichotte, D., et al. (1997). Photodynamic therapy for early squamous cell carcinomas of the esophagus, bronchi, and mouth with m-tetra (hydroxyphenyl) chlorin. Archives of Otolaryngology - Head and Neck Surgery, 123(2), 162–168.

    CAS  PubMed  Google Scholar 

  108. Taber, S. W., Fingar, V. H., & Wieman, T. J. (1998). Photodynamic therapy for palliation of chest wall recurrence in patients with breast cancer. Journal of Surgical Oncology, 68(4), 209–214. doi:10.1002/(SICI)1096-9098(199808)68:4<209::AID-JSO2>3.0.CO;2-8.

    CAS  PubMed  Google Scholar 

  109. Wyss, P., Schwarz, V., Dobler-Girdziunaite, D., Hornung, R., Walt, H., Degen, A., et al. (2001). Photodynamic therapy of locoregional breast cancer recurrences using a chlorin-type photosensitizer. International Journal of Cancer, 93(5), 720–724. doi:10.1002/Ijc.1400.

    CAS  Google Scholar 

  110. Baas, P., Saarnak, A. E., Oppelaar, H., Neering, H., & Stewart, F. A. (2001). Photodynamic therapy with meta-tetrahydroxyphenylchlorin for basal cell carcinoma: a phase I/II study. British Journal of Dermatology, 145(1), 75–78. doi:10.1046/J.1365-2133.2001.04284.X.

    CAS  PubMed  Google Scholar 

  111. Jeffes, E. W., McCullough, J. L., Weinstein, G. D., Fergin, P. E., Nelson, J. S., Shull, T. F., et al. (1997). Photodynamic therapy of actinic keratosis with topical 5-aminolevulinic acid—a pilot dose-ranging study. Archives of Dermatology, 133(6), 727–732. doi:10.1001/Archderm.133.6.727.

    CAS  PubMed  Google Scholar 

  112. McCaughan, J. S., Jr., Guy, J. T., Hicks, W., Laufman, L., Nims, T. A., & Walker, J. (1989). Photodynamic therapy for cutaneous and subcutaneous malignant neoplasms. Archives of Surgery, 124(2), 211–216.

    PubMed  Google Scholar 

  113. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi:10.1016/j.cell.2011.02.013S0092-8674(11)00127-9.

    CAS  PubMed  Google Scholar 

  114. Duska, L. R., Hamblin, M. R., Bamberg, M. P., & Hasan, T. (1997). Biodistribution of charged F(ab’)(2) photoimmunoconjugates in a xenograft model of ovarian cancer. British Journal of Cancer, 75(6), 837–844. doi:10.1038/Bjc.1997.149.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Pelegrin, A., Folli, S., Buchegger, F., Mach, J. P., Wagnieres, G., & van den Bergh, H. (1991). Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer, 67(10), 2529–2537.

    CAS  PubMed  Google Scholar 

  116. Slinkin, M. A., Curtet, C., Faivrechauvet, A., Saimaurel, C., Gestin, J. F., Torchilin, V. P., et al. (1993). Biodistribution of anti-Cea F(Ab’)2 fragments conjugated with chelating polymers—influence of conjugate electron charge on tumor uptake and blood clearance. Nuclear Medicine and Biology, 20(4), 443–452. doi:10.1016/0969-8051(93)90075-6.

    CAS  PubMed  Google Scholar 

  117. Vrouenraets, M. B., Visser, G. W., Stewart, F. A., Stigter, M., Oppelaar, H., Postmus, P. E., et al. (1999). Development of meta-tetrahydroxyphenylchlorin-monoclonal antibody conjugates for photoimmunotherapy. Cancer Research, 59(7), 1505–1513.

    CAS  PubMed  Google Scholar 

  118. Vrouenraets, M. B., Visser, G. W. M., Loup, C., Meunier, B., Stigter, M., Oppelaar, H., et al. (2000). Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies: a new possibility for use in photodynamic therapy. International Journal of Cancer, 88(1), 108–114. doi:10.1002/1097-0215(20001001)88:1<108::Aid-Ijc17>3.0.Co;2-H.

    CAS  Google Scholar 

  119. Brasseur, N., Langlois, R., La Madeleine, C., Ouellet, R., & van Lier, J. E. (1999). Receptor-mediated targeting of phthalocyanines to macrophages via covalent coupling to native or maleylated bovine serum albumin. Photochemistry and Photobiology, 69(3), 345–352. doi:10.1562/0031-8655(1999)069<0345:Rmtopt>2.3.Co;2.

    CAS  PubMed  Google Scholar 

  120. Del Governatore, M., Hamblin, M. R., Piccinini, E. E., Ugolini, G., & Hasan, T. (2000). Targeted photodestruction of human colon cancer cells using charged 17.1A chlorin(e6) immunoconjugates. British Journal of Cancer, 82(1), 56–64.

    PubMed Central  PubMed  Google Scholar 

  121. Mew, D., Wat, C. K., Towers, G. H., & Levy, J. G. (1983). Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. Journal of Immunology, 130(3), 1473–1477.

    CAS  Google Scholar 

  122. Pogrebniak, H. W., Matthews, W., Black, C., Russo, A., Mitchell, J. B., Smith, P., et al. (1993). Targeted phototherapy with sensitizer-monoclonal antibody conjugate and light. Surgical Oncology, 2(1), 31–42.

    CAS  PubMed  Google Scholar 

  123. Mitsunaga, M., Ogawa, M., Kosaka, N., Rosenblum, L. T., Choyke, P. L., & Kobayashi, H. (2011). Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nature Medicine, 17(12), 1685–1691. doi:10.1038/nm.2554nm.2554.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Detty, M. R., Gibson, S. L., & Wagner, S. J. (2004). Current clinical and preclinical photosensitizers for use in photodynamic therapy. Journal of Medicinal Chemistry, 47(16), 3897–3915. doi:10.1021/Jm040074b.

    CAS  PubMed  Google Scholar 

  125. Ntziachristos, V., Ripoll, J., Wang, L. H. V., & Weissleder, R. (2005). Looking and listening to light: the evolution of whole-body photonic imaging. Nature Biotechnology, 23(3), 313–320. doi:10.1038/Nbt1074.

    CAS  PubMed  Google Scholar 

  126. Nakajima, T., Sano, K., Mitsunaga, M., Choyke, P. L., & Kobayashi, H. (2012). Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Research, 72(18), 4622–4628. doi:10.1158/0008-5472.CAN-12-12980008-5472.CAN-12-1298.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Reichert, J. M., Rosensweig, C. J., Faden, L. B., & Dewitz, M. C. (2005). Monoclonal antibody successes in the clinic. Nature Biotechnology, 23(9), 1073–1078. doi:10.1038/nbt0905-1073.

    CAS  PubMed  Google Scholar 

  128. Waldmann, T. A. (2003). Immunotherapy: past, present and future. Nature Medicine, 9(3), 269–277. doi:10.1038/nm0303-269nm0303-269.

    CAS  PubMed  Google Scholar 

  129. Nakajima, T., Sano, K., Choyke, P. L., & Kobayashi, H. (2013). Improving the efficacy of photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics, 3(6), 357–365. doi:10.7150/thno.5908thnov03p0357.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eben L. Rosenthal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warram, J.M., de Boer, E., Sorace, A.G. et al. Antibody-based imaging strategies for cancer. Cancer Metastasis Rev 33, 809–822 (2014). https://doi.org/10.1007/s10555-014-9505-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9505-5

Keywords

Navigation