Skip to main content

Advertisement

Log in

PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Anti-cancer cancer-targeted therapies are designed to exploit a particular vulnerability in the tumor, which in most cases results from its dependence on an oncogene and/or loss of a tumor suppressor. Mutations in the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway are freqcuently found in breast cancers and associated with cellular transformation, tumorigenesis, cancer progression, and drug resistance. Several drugs targeting PI3K/ATK/mTOR are currently in clinical trials, mainly in combination with endocrine therapy and anti-HER2 therapy. These drugs are the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Engelman, J. A., Luo, J., & Cantley, L. C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Reviews. Genetics, 7(8), 606–619.

    Article  CAS  PubMed  Google Scholar 

  2. Engelman, J. A. (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Reviews. Cancer, 9(8), 550–562.

    Article  CAS  PubMed  Google Scholar 

  3. Thorpe, L. M., Yuzugullu, H., & Zhao, J. J. (2015). PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nature Reviews. Cancer, 15(1), 7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agoulnik, I. U., Hodgson, M. C., Bowden, W. A., Ittmann, M. M., Agoulnik, I. U., Hodgson, M. C., et al. (2011). INPP4B: the new kid on the PI3K block. Oncotarget, 2(4), 321–328.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Salmena, L., Carracedo, A., & Pandolfi, P. P. (2008). Tenets of PTEN tumor suppression. Cell, 133(3), 403–414.

    Article  CAS  PubMed  Google Scholar 

  6. Ciriello, G., Gatza, M. L., Beck, A. H., Wilkerson, M. D., Rhie, S. K., Pastore, A., et al. (2015). Comprehensive molecular portraits of invasive lobular breast cancer. Cell, 163(2), 506–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, C.-H., Mandelker, D., Schmidt-Kittler, O., Samuels, Y., Velculescu, V. E., Kinzler, K. W., et al. (2007). The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Science, 318(5857), 1744–1748.

    Article  CAS  PubMed  Google Scholar 

  8. Hao, Y., Wang, C., Cao, B., Hirsch, B. M., Song, J., Markowitz, S. D., et al. (2013 13). Gain of interaction with IRS1 by p110α-helical domain mutants is crucial for their oncogenic functions. Cancer Cell, 23(5), 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burke, J. E., Perisic, O., Masson, G. R., Vadas, O., & Williams, R. L. (2012). Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15259–15264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, J. J., Liu, Z., Wang, L., Shin, E., Loda, M. F., & Roberts, T. M. (2005). The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18443–18448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Isakoff, S. J., Engelman, J. A., Irie, H. Y., Luo, J., Brachmann, S. M., Pearline, R. V., et al. (2005). Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Research, 65(23), 10992–11000.

    Article  CAS  PubMed  Google Scholar 

  12. Kang, S., Bader, A. G., & Vogt, P. K. (2005). Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 802–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tikoo, A., Roh, V., Montgomery, K. G., Ivetac, I., Waring, P., Pelzer, R., et al. (2012). Physiological levels of Pik3ca(H1047R) mutation in the mouse mammary gland results in ductal hyperplasia and formation of ERα-positive tumors. PloS One, 7(5), e36924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan, W., Stawiski, E., Janakiraman, V., Chan, E., Durinck, S., Edgar, K. A., et al. (2013). Conditional activation of Pik3ca(H1047R) in a knock-in mouse model promotes mammary tumorigenesis and emergence of mutations. Oncogene, 32(3), 318–326.

    Article  CAS  PubMed  Google Scholar 

  15. Adams, J. R., Xu, K., Liu, J. C., Agamez, N. M. R., Loch, A. J., Wong, R. G., et al. (2011). Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation. Cancer Research, 71(7), 2706–2717.

    Article  CAS  PubMed  Google Scholar 

  16. Network, T. C. G. A. (2012 4). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70.

    Article  Google Scholar 

  17. Loi, S., Haibe-Kains, B., Majjaj, S., Lallemand, F., Durbecq, V., Larsimont, D., et al. (2010). PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(22), 10208–10213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kalinsky, K., Jacks, L. M., Heguy, A., Patil, S., Drobnjak, M., Bhanot, U. K., et al. (2009). PIK3CA mutation associates with improved outcome in breast cancer. Clinical Cancer Research, 15(16), 5049–5059.

    Article  CAS  PubMed  Google Scholar 

  19. Sabine, V. S., Crozier, C., Brookes, C. L., Drake, C., Piper, T., van de Velde, C. J. H., et al. (2014). Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. Journal of Clinical Oncology, 32(27), 2951–2958.

    Article  CAS  PubMed  Google Scholar 

  20. Gewinner, C., Wang, Z. C., Richardson, A., Teruya-Feldstein, J., Etemadmoghadam, D., Bowtell, D., et al. (2009). Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell, 16(2), 115–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carpten, J. D., Faber, A. L., Horn, C., Donoho, G. P., Briggs, S. L., Robbins, C. M., et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448(7152), 439–444.

    Article  CAS  PubMed  Google Scholar 

  22. Jaiswal, B. S., Janakiraman, V., Kljavin, N. M., Chaudhuri, S., Stern, H. M., Wang, W., et al. (2009). Somatic mutations in p85alpha promote tumorigenesis through class IA PI3K activation. Cancer Cell, 16(6), 463–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun, M., Hillmann, P., Hofmann, B. T., Hart, J. R., & Vogt, P. K. (2010 Aug 31). Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15547–15552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laplante, M., & Sabatini, D. M. (2012). mTOR signaling in growth control and disease. Cell, 149(2), 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanchez, C. G., Ma, C. X., Crowder, R. J., Guintoli, T., Phommaly, C., Gao, F., et al. (2011). Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Research, 13(2), R21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miller, T. W., Hennessy, B. T., González-Angulo, A. M., Fox, E. M., Mills, G. B., Chen, H., et al. (2010). Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. The Journal of Clinical Investigation, 120(7), 2406–2413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. deGraffenried, L. A., Friedrichs, W. E., Russell, D. H., Donzis, E. J., Middleton, A. K., Silva, J. M., et al. (2004 Dec 1). Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt activity. Clinical Cancer Research, 10(23), 8059–8067.

    Article  CAS  PubMed  Google Scholar 

  28. Baselga, J., Campone, M., Piccart, M., Burris, H. A., Rugo, H. S., Sahmoud, T., et al. (2012). Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. The New England Journal of Medicine, 366(6), 520–529.

    Article  CAS  PubMed  Google Scholar 

  29. Bachelot, T., Bourgier, C., Cropet, C., Ray-Coquard, I., Ferrero, J.-M., Freyer, G., et al. (2012). Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. Journal of Clinical Oncology, 30(22), 2718–2724.

    Article  CAS  PubMed  Google Scholar 

  30. Wolff, A. C., Lazar, A. A., Bondarenko, I., Garin, A. M., Brincat, S., Chow, L., et al. (2013). Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. Journal of Clinical Oncology, 31(2), 195–202.

    Article  CAS  PubMed  Google Scholar 

  31. Rugo HS, Seneviratne L, Beck JT, Glaspy JA, Peguero JA, Pluard TJ, et al. Prevention of everolimus/exemestane (EVE/EXE) stomatitis in postmenopausal (PM) women with hormone receptor-positive (HR+) metastatic breast cancer (MBC) using a dexamethasone-based mouthwash (MW): results of the SWISH trial. Journal of Clinical Oncology, 34 (suppl; abstr 525).

  32. Hortobagyi, G. N., Chen, D., Piccart, M., Rugo, H. S., Burris, H. A., Pritchard, K. I., et al. (2016). Correlative analysis of genetic alterations and everolimus benefit in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from BOLERO-2. Journal of Clinical Oncology, 34(5), 419–426.

    Article  CAS  PubMed  Google Scholar 

  33. (2016). Correlation of PIK3CA mutations in cell-free DNA (cfDNA) and efficacy of everolimus (EVE) in metastatic breast cancer: results from BOLERO-2. Journal of Clinical Oncology, 34(suppl; abstr 519).

  34. Voss, M. H., Hakimi, A. A., Pham, C. G., Brannon, A. R., Chen, Y.-B., Cunha, L. F., et al. (2014). Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clinical Cancer Research, 20(7), 1955–1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iyer, G., Hanrahan, A. J., Milowsky, M. I., Al-Ahmadie, H., Scott, S. N., Janakiraman, M., et al. (2012 Oct 12). Genome sequencing identifies a basis for everolimus sensitivity. Science, 338(6104), 221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller, T. W., Forbes, J. T., Shah, C., Wyatt, S. K., Manning, H. C., Olivares, M. G., et al. (2009). Inhibition of mammalian target of rapamycin is required for optimal antitumor effect of HER2 inhibitors against HER2-overexpressing cancer cells. Clinical Cancer Research, 15(23), 7266–7276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagata, Y., Lan, K.-H., Zhou, X., Tan, M., Esteva, F. J., Sahin, A. A., et al. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell, 6(2), 117–127.

    Article  CAS  PubMed  Google Scholar 

  38. Berns, K., Horlings, H. M., Hennessy, B. T., Madiredjo, M., Hijmans, E. M., Beelen, K., et al. (2007). A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell, 12(4), 395–402.

    Article  CAS  PubMed  Google Scholar 

  39. Hurvitz, S. A., Andre, F., Jiang, Z., Shao, Z., Mano, M. S., Neciosup, S. P., et al. (2015). Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with HER2-positive advanced breast cancer (BOLERO-1): a phase 3, randomised, double-blind, multicentre trial. The Lancet Oncology, 16(7), 816–829.

    Article  CAS  PubMed  Google Scholar 

  40. André, F., O’Regan, R., Ozguroglu, M., Toi, M., Xu, B., Jerusalem, G., et al. (2014). Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial. The Lancet Oncology, 15(6), 580–591.

    Article  PubMed  Google Scholar 

  41. André, F., Hurvitz, S., Fasolo, A., Tseng, L.-M., Jerusalem, G., Wilks, S., et al. (2016). Molecular alterations and everolimus efficacy in human epidermal growth factor receptor 2-overexpressing metastatic breast cancers: combined exploratory biomarker analysis from BOLERO-1 and BOLERO-3. Journal of Clinical Oncology, 34(18), 2115–2124.

    Article  PubMed  Google Scholar 

  42. Hanker, A. B., Pfefferle, A. D., Balko, J. M., Kuba, M. G., Young, C. D., Sánchez, V., et al. (2013). Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proceedings of the National Academy of Sciences of the United States of America, 110(35), 14372–14377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baselga, J., Cortés, J., Im, S. A., Clark, E., Ross, G., Kiermaier, A., et al. (2014) Biomarker analyses in CLEOPATRA: a phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 32(33), 3753–61.

  44. Loibl, S., Majewski, I., Guarneri, V., Nekljudova, V., Holmes, E., Bria, E., et al. (2016). PIK3CA mutations are associated with reduced pathological complete response rates in primary HER2-positive breast cancer: pooled analysis of 967 patients from five prospective trials investigating lapatinib and trastuzumab. Annals of Oncology, 27(8), 1519–1525.

    Article  CAS  PubMed  Google Scholar 

  45. Pogue-Geile, K. L., Song, N., Jeong, J.-H., Gavin, P. G., Kim, S.-R., Blackmon, N. L., et al. (2015). Intrinsic subtypes, PIK3CA mutation, and the degree of benefit from adjuvant trastuzumab in the NSABP B-31 trial. Journal of Clinical Oncology, 33(12), 1340–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perez, E. A., Dueck, A. C., McCullough, A. E., Chen, B., Geiger, X. J., Jenkins, R. B., et al. (2013). Impact of PTEN protein expression on benefit from adjuvant trastuzumab in early-stage human epidermal growth factor receptor 2-positive breast cancer in the north central cancer treatment group N9831 trial. Journal of Clinical Oncology, 31(17), 2115–2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tabernero, J., Rojo, F., Calvo, E., Burris, H., Judson, I., Hazell, K., et al. (2008). Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. Journal of Clinical Oncology, 26(10), 1603–1610.

    Article  CAS  PubMed  Google Scholar 

  48. Cloughesy, T. F., Yoshimoto, K., Nghiemphu, P., Brown, K., Dang, J., Zhu, S., et al. (2008). Antitumor activity of rapamycin in a phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Medicine, 5(1), e8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Basu, B., Dean, E., Puglisi, M., Greystoke, A., Ong, M., Burke, W., et al. (2015). First-in-human pharmacokinetic and pharmacodynamic study of the dual m-TORC 1/2 inhibitor AZD2014. Clinical Cancer Research, 21(15), 3412–3419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gökmen-Polar, Y., Liu, Y., Toroni, R. A., Sanders, K. L., Mehta, R., Badve, S., et al. (2012). Investigational drug MLN0128, a novel TORC1/2 inhibitor, demonstrates potent oral antitumor activity in human breast cancer xenograft models. Breast Cancer Research and Treatment, 136(3), 673–682.

    Article  PubMed  Google Scholar 

  51. Guichard, S. M., Howard, Z., Heathcote, D., Roth, M., Hughes, G., Curwen, J., et al. (2012). Abstract 917: AZD2014, a dual mTORC1 and mTORC2 inhibitor is differentiated from allosteric inhibitors of mTORC1 in ER+ breast cancer. Cancer Research, 72(8 Supplement), 917–917.

    Article  Google Scholar 

  52. Wagle, N., Grabiner, B. C., Van Allen, E. M., Amin-Mansour, A., Taylor-Weiner, A., Rosenberg, M., et al. (2014 Oct 9). Response and acquired resistance to everolimus in anaplastic thyroid cancer. The New England Journal of Medicine, 371(15), 1426–1433.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rodrik-Outmezguine, V. S., Okaniwa, M., Yao, Z., Novotny, C. J., McWhirter, C., Banaji, A., et al. (2016). Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature, 534(7606), 272–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ellis, M. J., Lin, L., Crowder, R., Tao, Y., Hoog, J., Snider, J., et al. (2009). Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Research and Treatment, 119(2), 379.

    Article  Google Scholar 

  55. Miller, T. W., Balko, J. M., & Arteaga, C. L. (2011). Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. Journal of Clinical Oncology, 29(33), 4452–4461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mayer, I. A., Abramson, V. G., Isakoff, S. J., Forero, A., Balko, J. M., Kuba, M. G., et al. (2014). Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. Journal of Clinical Oncology, 32(12), 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crowder, R. J., Phommaly, C., Tao, Y., Hoog, J., Luo, J., Perou, C. M., et al. (2009). PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Research, 69(9), 3955–3962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fox, E. M., Kuba, M. G., Miller, T. W., Davies, B. R., & Arteaga, C. L. (2013). Autocrine IGF-I/insulin receptor axis compensates for inhibition of AKT in ER-positive breast cancer cells with resistance to estrogen deprivation. Breast Cancer Res BCR., 15(4), R55.

    Article  CAS  PubMed  Google Scholar 

  59. Creighton, C. J., Fu, X., Hennessy, B. T., Casa, A. J., Zhang, Y., Gonzalez-Angulo, A. M., et al. (2010). Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Research, 12(3), R40.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bosch, A., Li, Z., Bergamaschi, A., Ellis, H., Toska, E., Prat, A., et al. (2015). PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Science Translational Medicine, 7(283), 283ra51.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Miller, T. W., Balko, J. M., Fox, E. M., Ghazoui, Z., Dunbier, A., Anderson, H., et al. (2011). ERα-dependent E2F transcription can mediate resistance to estrogen deprivation in human breast cancer. Cancer Discovery, 1(4), 338–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodon, J., Dienstmann, R., Serra, V., & Tabernero, J. (2013). Development of PI3K inhibitors: lessons learned from early clinical trials. Nature Reviews. Clinical Oncology, 10(3), 143–153.

    Article  CAS  PubMed  Google Scholar 

  63. O’Brien, C., Wallin, J. J., Sampath, D., GuhaThakurta, D., Savage, H., Punnoose, E. A., et al. (2010). Predictive biomarkers of sensitivity to the phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer preclinical models. Clinical Cancer Research, 16(14), 3670–3683.

    Article  PubMed  Google Scholar 

  64. Sarker, D., Ang, J. E., Baird, R., Kristeleit, R., Shah, K., Moreno, V., et al. (2015). First-in-human phase I study of pictilisib (GDC-0941), a potent pan–class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clinical Cancer Research, 21(1), 77–86.

    Article  CAS  PubMed  Google Scholar 

  65. Schmid, P., Pinder, S. E., Wheatley, D., Macaskill, J., Zammit, C., Hu, J., et al. (2016). Phase II randomized preoperative window-of-opportunity study of the PI3K inhibitor pictilisib plus anastrozole compared with anastrozole alone in patients with estrogen receptor-positive breast cancer. Journal of Clinical Oncology, 34(17), 1987–1994.

    Article  PubMed  Google Scholar 

  66. Krop, I. E., Mayer, I. A., Ganju, V., Dickler, M., Johnston, S., Morales, S., et al. (2016). Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet Oncology, 17(6), 811–821.

    Article  CAS  PubMed  Google Scholar 

  67. Ma, C. X., Luo, J., Naughton, M., Ademuyiwa, F., Suresh, R., Griffith, M., et al. (2016). A phase I trial of BKM120 (buparlisib) in combination with fulvestrant in postmenopausal women with estrogen receptor–positive metastatic breast cancer. Clinical Cancer Research, 22(7), 1583–1591.

    Article  CAS  PubMed  Google Scholar 

  68. Baselga J, Im S-A, Iwata H, Clemons M, et al. (2015). PIK3CA status in circulating tumor DNA (ctDNA) predicts efficacy of buparlisib (BUP) plus fulvestrant (FULV) in postmenopausal women with endocrine-resistant HR+/HER2 advanced breast cancer (BC): first results from the randomized, phase III BELLE-2 trial. SABCS.

  69. Utermark, T., Rao, T., Cheng, H., Wang, Q., Lee, S. H., Wang, Z. C., et al. (2012). The p110α and p110β isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. Genes & Development, 26(14), 1573–1586.

    Article  CAS  Google Scholar 

  70. Zhao, J. J., Cheng, H., Jia, S., Wang, L., Gjoerup, O. V., Mikami, A., et al. (2006). The p110alpha isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16296–16300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Foukas, L. C., Claret, M., Pearce, W., Okkenhaug, K., Meek, S., Peskett, E., et al. (2006). Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature, 441(7091), 366–370.

    Article  CAS  PubMed  Google Scholar 

  72. Juric D, Burris H, Schuler M, Schellens J, Berlin J, Seggewiß-Bernhardt R, et al. Phase I study of the pi3kα inhibitor byl719, as a single agent in patients with advanced solid tumors (AST). Ann Oncol. 2014;25(suppl 4):iv150.

  73. Shah PD, Moynahan ME, Modi S, et al. (2014). Phase I trial: PI3Kα inhibitor BYL719 plus aromatase inhibitor (AI) for patients with hormone receptor-positive (HR+) metastatic breast cancer (MBC). SABCS.

  74. Mayer IA, Abramson V, Formisano L, Balko JM, Estrada MV, Sanders M, et al. (2016). A phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2-negative metastatic breast cancer. Clinical Cancer Research.

  75. Ndubaku, C. O., Heffron, T. P., Staben, S. T., Baumgardner, M., Blaquiere, N., Bradley, E., et al. (2013). Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1 H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1 H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. Journal of Medicinal Chemistry, 56(11), 4597–4610.

    Article  CAS  PubMed  Google Scholar 

  76. Olivero, A. G., Heffron, T. P., Baumgardner, M., Belvin, M., Ross, L. B., Blaquiere, N., et al. (2013). Abstract DDT02-01: discovery of GDC-0032: a beta-sparing PI3K inhibitor active against PIK3CA mutant tumors. Cancer Research, 73(8 Supplement), DDT02-01.

    Article  Google Scholar 

  77. Saura C, Sachdev J, Patel MR, et al. (2014). Ph1b study of the PI3K inhibitor taselisib (GDC-0032) in combination with letrozole in patients with hormone receptor-positive advanced breast cancer. SABCS.

  78. Baird R, Van Rossum A, Oliveira M,et al. (2016). POSEIDON trial phase 1b results: safety and preliminary efficacy of the isoform selective PI3K inhibitor taselisib (GDC-0032) combined with tamoxifen in hormone receptor (HR) positive, HER2-negative metastatic breast cancer (MBC) patients (pts)—including response monitoring by plasma circulating tumor (ct) DNA. Journal of Clinical Oncology, 34(suppl; abstr 2520).

  79. Dickler M, Saura C, Donald A, et al. (2016). A phase II study of the PI3K inhibitor taselisib (GDC-0032) combined with fulvestrant (F) in patients (pts) with HER2-negative (HER2), hormone receptor-positive (HR+) advanced breast cancer (BC). Journal of Clinical Oncology, 34 (suppl; abstr 520).

  80. Ma, C. X., Sanchez, C., Gao, F., Crowder, R., Naughton, M., Pluard, T., et al. (2016). A phase I study of the AKT inhibitor MK-2206 in combination with hormonal therapy in postmenopausal women with estrogen receptor-positive metastatic breast cancer. Clinical Cancer Research, 22(11), 2650–2658.

    Article  CAS  PubMed  Google Scholar 

  81. Hyman, D. M., Smyth, L., Bedard, P. L., Oza, A., Dean, E., Armstrong, A., et al. (2015). Abstract B109: AZD5363, a catalytic pan-Akt inhibitor, in Akt1 E17K mutation positive advanced solid tumors. Am Assoc Cancer Res, 14(12 Supplement 2), B109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos L. Arteaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Zotano, A., Mayer, I.A. & Arteaga, C.L. PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment. Cancer Metastasis Rev 35, 515–524 (2016). https://doi.org/10.1007/s10555-016-9637-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-016-9637-x

Keywords

Navigation