Skip to main content

Advertisement

Log in

Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Cancer metastasis involves complex cell behavior and interaction with the extracellular matrix by metabolically active cells. To observe invasion and metastasis with sub-cellular resolution in vivo, multiphoton microscopy (MPM) allows imaging more deeply into tissues with less toxicity, compared with other optical imaging methods. MPM can be combined with second harmonic generation (SHG), fluorescent lifetime imaging microscopy (FLIM), and spectral-lifetime imaging microscopy (SLIM). SHG facilitates imaging of stromal collagen and tumor–stroma interactions, including the architecture and remodeling of the tumor microenvironment. FLIM allows characterization of exogenous and endogenous fluorophores, such as the metabolites FAD and NADH to score for metabolic state and provide optical biomarkers. SLIM permits additional identification and separation of endogenous and exogenous fluorophores by simultaneously collecting their spectra and lifetime, producing an optical molecular “fingerprint”. Both FLIM and SLIM also serve as an improved method for the assessment of Förster (or fluorescence) resonance energy transfer (FRET). Hence, the use and further development of these approaches strongly enhances the visualization and quantification of tumor progression, invasion, and metastasis. Herein, we review recent developments of multiphoton FLIM and SLIM to study 2D and 3D cell migration, invasion into the tumor microenvironment, and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15:50–65. doi:10.1101/gad.828901

    Article  PubMed  CAS  Google Scholar 

  2. Condeelis J, Singer RH, Segall JE (2005) The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 21:695–718. doi:10.1146/annurev.cellbio.21.122303.120306

    Article  PubMed  CAS  Google Scholar 

  3. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266. doi:10.1016/j.cell.2006.01.007

    Article  PubMed  CAS  Google Scholar 

  4. Shekhar MP, Pauley R, Heppner G, Werdell J, Santner SJ, Pauley RJ, Tait L (2003) Host microenvironment in breast cancer development: extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res 5:130–135 Epub 2003 Feb 2020

    Article  PubMed  CAS  Google Scholar 

  5. Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7:737–749. doi:10.1038/nrc2229

    Article  PubMed  CAS  Google Scholar 

  6. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, Sahai E (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400. doi:10.1038/ncb1658

    Article  PubMed  CAS  Google Scholar 

  7. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348. doi:10.1016/j.cell.2005.02.034

    Article  PubMed  CAS  Google Scholar 

  8. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695. doi:10.1016/j.cell.2006.11.001

    Article  PubMed  CAS  Google Scholar 

  9. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128. doi:10.1038/nm0103-123

    Article  PubMed  CAS  Google Scholar 

  10. Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 99:377–382. doi:10.1073/pnas.012611099

    Article  PubMed  CAS  Google Scholar 

  11. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580. doi:10.1101/gad.1047403

    Article  PubMed  CAS  Google Scholar 

  12. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693. doi:10.1038/nrc882

    Article  PubMed  CAS  Google Scholar 

  13. Megason SG, Fraser SE (2007) Imaging in systems biology. Cell 130:784–795. doi:10.1016/j.cell.2007.08.031

    Article  PubMed  CAS  Google Scholar 

  14. Diaspro A, Sheppard CJR (2002) Confocal and two-photon microscopy. In: Diaspro A (ed) Foundations, applications, and advances. Wiley-Liss, Inc, New York

    Google Scholar 

  15. Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn. Springer, New York

    Google Scholar 

  16. Brakenhoff GJ, van der Voort HT, van Spronsen EA, Linnemans WA, Nanninga N (1985) Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy. Nature 317:748–749. doi:10.1038/317748a0

    Article  PubMed  CAS  Google Scholar 

  17. White JG, Amos WB, Fordham M (1987) An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105:41–48. doi:10.1083/jcb.105.1.41

    Article  PubMed  CAS  Google Scholar 

  18. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76. doi:10.1126/science.2321027

    Article  PubMed  CAS  Google Scholar 

  19. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75:2015–2024

    Article  PubMed  CAS  Google Scholar 

  20. Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767. doi:10.1038/11698

    Article  PubMed  CAS  Google Scholar 

  21. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940. doi:10.1038/nmeth818

    Article  PubMed  CAS  Google Scholar 

  22. Cox G, Sheppard CJ (2004) Practical limits of resolution in confocal and non-linear microscopy. Microsc Res Tech 63:18–22. doi:10.1002/jemt.10423

    Article  PubMed  Google Scholar 

  23. Helmchen F, Denk W (2002) New developments in multiphoton microscopy. Curr Opin Neurobiol 12:593–601. doi:10.1016/S0959-4388(02)00362-8

    Article  PubMed  CAS  Google Scholar 

  24. Diaspro A, Sheppard CJR (2002) Two-photon excitation fluorescence microscopy. In: Diaspro A (ed) Confocal and two-photon microscopy: foundations, applications, and advances. Wiley-Liss, Inc, New York, pp 39–73

    Google Scholar 

  25. Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA (2002) Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J 82:493–508

    Article  PubMed  CAS  Google Scholar 

  26. Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99:11014–11019. doi:10.1073/pnas.172368799

    Article  PubMed  CAS  Google Scholar 

  27. Cox G, Kable E, Jones A, Fraser I, Manconi F, Gorrell MD (2003) 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol 141:53–62. doi:10.1016/S1047-8477(02)00576-2

    Article  PubMed  CAS  Google Scholar 

  28. Mohler W, Millard AC, Campagnola PJ (2003) Second harmonic generation imaging of endogenous structural proteins. Methods 29:97–109. doi:10.1016/S1046-2023(02)00292-X

    Article  PubMed  CAS  Google Scholar 

  29. Plotnikov SV, Millard AC, Campagnola PJ, Mohler WA (2006) Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys J 90:693–703. doi:10.1529/biophysj.105.071555

    Article  PubMed  CAS  Google Scholar 

  30. Williams RM, Zipfel WR, Webb WW (2005) Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88:1377–1386. doi:10.1529/biophysj.104.047308

    Article  PubMed  CAS  Google Scholar 

  31. Stoller P, Kim BM, Rubenchik AM, Reiser KM, Da Silva LB (2002) Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J Biomed Opt 7:205–214. doi:10.1117/1.1431967

    Article  PubMed  Google Scholar 

  32. Freund I, Deutsch M (1986) Second-harmonic microscopy of biological tissue. Opt Lett 11:94–96

    Article  CAS  PubMed  Google Scholar 

  33. Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21:1356–1360. doi:10.1038/nbt894

    Article  PubMed  CAS  Google Scholar 

  34. Roth S, Freund I (1981) Optical second-harmonic scattering in rat-tail tendon. Biopolymers 20:1271–1290. doi:10.1002/bip.1981.360200613

    Article  PubMed  CAS  Google Scholar 

  35. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930. doi:10.1038/nrc1231

    Article  PubMed  CAS  Google Scholar 

  36. Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Huttelmaier S, Zavadil J, Cermak L, Bottinger EP, Singer RH, White JG, Segall JE, Condeelis JS (2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res 62:6278–6288

    PubMed  CAS  Google Scholar 

  37. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11. doi:10.1186/1741-7015-6-11

    Article  PubMed  CAS  Google Scholar 

  38. Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain RK (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat Med 9:796–800. doi:10.1038/nm879

    Article  PubMed  CAS  Google Scholar 

  39. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868. doi:10.1038/89997

    Article  PubMed  CAS  Google Scholar 

  40. Jain RK, Munn LL, Fukumura D (2002) Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2:266–276. doi:10.1038/nrc778

    Article  PubMed  CAS  Google Scholar 

  41. Skala MC, Squirrell JM, Vrotsos KM, Eickhoff JC, Gendron-Fitzpatrick A, Eliceiri KW, Ramanujam N (2005) Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res 65:1180–1186. doi:10.1158/0008-5472.CAN-04-3031

    Article  PubMed  CAS  Google Scholar 

  42. Sahai E, Wyckoff J, Philippar U, Segall JE, Gertler F, Condeelis J (2005) Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol 5:14. doi:10.1186/1472-6750-5-14

    Article  PubMed  CAS  Google Scholar 

  43. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4:38. doi:10.1186/1741-7015-4-38

    Article  PubMed  CAS  Google Scholar 

  44. Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE, Condeelis JS (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67:3505–3511. doi:10.1158/0008-5472.CAN-06-3714

    Article  PubMed  CAS  Google Scholar 

  45. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277. doi:10.1083/jcb.200209006

    Article  PubMed  CAS  Google Scholar 

  46. He W, Wang H, Hartmann LC, Cheng JX, Low PS (2007) In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci USA 104:11760–11765. doi:10.1073/pnas.0703875104

    Article  PubMed  CAS  Google Scholar 

  47. Kirkpatrick ND, Brewer MA, Utzinger U (2007) Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiol Biomarkers Prev 16:2048–2057. doi:10.1158/1055-9965.EPI-07-0009

    Article  PubMed  CAS  Google Scholar 

  48. Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64:8585–8594. doi:10.1158/0008-5472.CAN-04-1136

    Article  PubMed  CAS  Google Scholar 

  49. Wang W, Mouneimne G, Sidani M, Wyckoff J, Chen X, Makris A, Goswami S, Bresnick AR, Condeelis JS (2006) The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol 173:395–404. doi:10.1083/jcb.200510115

    Article  PubMed  CAS  Google Scholar 

  50. van Munster EB, Gadella TW (2005) Fluorescence lifetime imaging microscopy (FLIM). Adv Biochem Eng Biotechnol 95:143–175

    PubMed  Google Scholar 

  51. Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M (1992) Fluorescence lifetime imaging. Anal Biochem 202:316–330. doi:10.1016/0003-2697(92)90112-K

    Article  PubMed  CAS  Google Scholar 

  52. Schneider PC, Clegg RM (1997) Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications. Rev Sci Instrum 68:4107–4118. doi:10.1063/1.1148354

    Article  CAS  Google Scholar 

  53. Valentini G, D’Andrea C, Comelli D, Pifferi A, Taroni P, Torricelli A, Cubeddu R, Battaglia C, Consolandi C, Salani G, Rossi-Bernardi L, De Bellis G (2000) Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity. Opt Lett 25:1648–1650. doi:10.1364/OL.25.001648

    Article  PubMed  CAS  Google Scholar 

  54. Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63:58–66. doi:10.1002/jemt.10421

    Article  PubMed  CAS  Google Scholar 

  55. Becker W, Bergmann A, Biskup C, Zimmer T, Kloecker N, Benndorf K (2002) Multi-wavelength TCSPC lifetime imaging. Proc SPIE 4620:79–84. doi:10.1117/12.470679

    Article  Google Scholar 

  56. Bird DK, Yan L, Vrotsos KM, Eliceiri KW, Vaughan EM, Keely PJ, White JG, Ramanujam N (2005) Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65:8766–8773. doi:10.1158/0008-5472.CAN-04-3922

    Article  PubMed  CAS  Google Scholar 

  57. Lee KC, Siegel J, Webb SE, Leveque-Fort S, Cole MJ, Jones R, Dowling K, Lever MJ, French PM (2001) Application of the stretched exponential function to fluorescence lifetime imaging. Biophys J 81:1265–1274

    Article  PubMed  CAS  Google Scholar 

  58. Skala MC, Riching KM, Bird DK, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, Keely PJ, Ramanujam N (2007) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 12:024014. doi:10.1117/1.2717503

    Article  PubMed  CAS  Google Scholar 

  59. Peter M, Ameer-Beg SM, Hughes MK, Keppler MD, Prag S, Marsh M, Vojnovic B, Ng T (2005) Multiphoton-FLIM quantification of the EGFP-mRFP1 FRET pair for localization of membrane receptor-kinase interactions. Biophys J 88:1224–1237. doi:10.1529/biophysj.104.050153

    Article  PubMed  CAS  Google Scholar 

  60. Parsons M, Monypenny J, Ameer-Beg SM, Millard TH, Machesky LM, Peter M, Keppler MD, Schiavo G, Watson R, Chernoff J, Zicha D, Vojnovic B, Ng T (2005) Spatially distinct binding of Cdc42 to PAK1 and N-WASP in breast carcinoma cells. Mol Cell Biol 25:1680–1695. doi:10.1128/MCB.25.5.1680-1695.2005

    Article  PubMed  CAS  Google Scholar 

  61. Majoul I, Jia Y, Duden R (2006) Practical fluorescence resonance energy transfer or molecular nanobioscopy of living cells. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 788–808

    Google Scholar 

  62. Peter M, Ameer-Beg SM (2004) Imaging molecular interactions by multiphoton FLIM. Biol Cell 96:231–236. doi:10.1016/j.biolcel.2003.12.006

    Article  PubMed  CAS  Google Scholar 

  63. French T, So PT, Weaver DJ Jr, Coelho-Sampaio T, Gratton E, Voss EW Jr, Carrero J (1997) Two-photon fluorescence lifetime imaging microscopy of macrophage-mediated antigen processing. J Microsc 185(Pt 3):339–353. doi:10.1046/j.1365-2818.1997.d01-632.x

    Article  PubMed  CAS  Google Scholar 

  64. Bird DK, Eliceiri KW, Fan CH, White JG (2004) Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl Opt 43:5173–5182. doi:10.1364/AO.43.005173

    Article  PubMed  Google Scholar 

  65. Cremazy FG, Manders EM, Bastiaens PI, Kramer G, Hager GL, van Munster EB, Verschure PJ, Gadella TJ Jr, van Driel R (2005) Imaging in situ protein–DNA interactions in the cell nucleus using FRET-FLIM. Exp Cell Res 309:390–396. doi:10.1016/j.yexcr.2005.06.007

    Article  PubMed  CAS  Google Scholar 

  66. Verveer PJ, Wouters FS, Reynolds AR, Bastiaens PI (2000) Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290:1567–1570. doi:10.1126/science.290.5496.1567

    Article  PubMed  CAS  Google Scholar 

  67. Harpur AG, Wouters FS, Bastiaens PI (2001) Imaging FRET between spectrally similar GFP molecules in single cells. Nat Biotechnol 19:167–169. doi:10.1038/84443

    Article  PubMed  CAS  Google Scholar 

  68. Tadrous PJ, Siegel J, French PM, Shousha S, Lalani el N, Stamp GW (2003) Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer. J Pathol 199:309–317. doi:10.1002/path.1286

    Article  PubMed  Google Scholar 

  69. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137. doi:10.1038/35052073

    Article  PubMed  CAS  Google Scholar 

  70. Offterdinger M, Georget V, Girod A, Bastiaens PI (2004) Imaging phosphorylation dynamics of the epidermal growth factor receptor. J Biol Chem 279:36972–36981. doi:10.1074/jbc.M405830200

    Article  PubMed  CAS  Google Scholar 

  71. Parsons M, Messent AJ, Humphries JD, Deakin NO, Humphries MJ (2008) Quantification of integrin receptor agonism by fluorescence lifetime imaging. J Cell Sci 121:265–271. doi:10.1242/jcs.018440

    Article  PubMed  CAS  Google Scholar 

  72. Parsons M, Adams J (in press) Rac regulates the interaction of fascin with protein kinase C in cell migration. J Cell Sci

  73. Avizienyte E, Keppler M, Sandilands E, Brunton VG, Winder SJ, Ng T, Frame MC (2007) An active Src kinase-beta-actin association is linked to actin dynamics at the periphery of colon cancer cells. Exp Cell Res 313:3175–3188. doi:10.1016/j.yexcr.2007.04.037

    Article  PubMed  CAS  Google Scholar 

  74. Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A, Chernoff J, Hung MC, Kumar R (2000) Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275:36238–36244. doi:10.1074/jbc.M002138200

    Article  PubMed  CAS  Google Scholar 

  75. Prag S, Parsons M, Keppler MD, Ameer-Beg SM, Barber P, Hunt J, Beavil AJ, Calvert R, Arpin M, Vojnovic B, Ng T (2007) Activated ezrin promotes cell migration through recruitment of the GEF Dbl to lipid rafts and preferential downstream activation of Cdc42. Mol Biol Cell 18:2935–2948. doi:10.1091/mbc.E06-11-1031

    Article  PubMed  CAS  Google Scholar 

  76. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100:7075–7080. doi:10.1073/pnas.0832308100

    Article  PubMed  CAS  Google Scholar 

  77. Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825

    Article  PubMed  CAS  Google Scholar 

  78. Palmer GM, Keely PJ, Breslin TM, Ramanujam N (2003) Autofluorescence spectroscopy of normal and malignant human breast cell lines. Photochem Photobiol 78:462–469. doi :10.1562/0031-8655(2003)078<0462:ASONAM>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  79. Kirkpatrick ND, Zou C, Brewer MA, Brands WR, Drezek RA, Utzinger U (2005) Endogenous fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoring. Photochem Photobiol 81:125–134. doi:10.1562/2004-08-09-RA-267.1

    Article  PubMed  CAS  Google Scholar 

  80. Pradhan A, Pal P, Durocher G, Villeneuve L, Balassy A, Babai F, Gaboury L, Blanchard L (1995) Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species. J Photochem Photobiol B 31:101–112. doi:10.1016/1011-1344(95)07178-4

    Article  PubMed  CAS  Google Scholar 

  81. Galeotti T, van Rossum GD, Mayer DH, Chance B (1970) On the fluorescence of NAD(P)H in whole-cell preparations of tumours and normal tissues. Eur J Biochem 17:485–496. doi:10.1111/j.1432-1033.1970.tb01191.x

    Article  PubMed  CAS  Google Scholar 

  82. Katz A, Savage HE, Schantz SP, McCormick SA, Alfano RR (2002) Noninvasive native fluorescence imaging of head and neck tumors. Technol Cancer Res Treat 1:9–15

    PubMed  CAS  Google Scholar 

  83. Pitts JD, Sloboda RD, Dragnev KH, Dmitrovsky E, Mycek MA (2001) Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells. J Biomed Opt 6:31–40. doi:10.1117/1.1333057

    Article  PubMed  CAS  Google Scholar 

  84. Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM, Morrison JF, Ockuly J, Stafstrom C, Sutula T, Roopra A (2006) 2-Deoxy-d-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387. doi:10.1038/nn1791

    Article  PubMed  CAS  Google Scholar 

  85. Warburg O (1930) The metabolism of tumors. Arnold Constable, London

    Google Scholar 

  86. Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39:223–229. doi:10.1007/s10863-007-9080-3

    Article  PubMed  CAS  Google Scholar 

  87. Chen Z, Lu W, Garcia-Prieto C, Huang P (2007) The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr 39:267–274. doi:10.1007/s10863-007-9086-x

    Article  PubMed  CAS  Google Scholar 

  88. Zhang Z, Li H, Liu Q, Zhou L, Zhang M, Luo Q, Glickson J, Chance B, Zheng G (2004) Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers. Biosens Bioelectron 20:643–650. doi:10.1016/j.bios.2004.03.034

    Article  PubMed  CAS  Google Scholar 

  89. Skala MC, Riching KM, Gendron-Fitzpatrick A, Eickhoff J, Eliceiri KW, White JG, Ramanujam N (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci USA 104:19494–19499. doi:10.1073/pnas.0708425104

    Article  PubMed  CAS  Google Scholar 

  90. Gatenby RA (1995) The potential role of transformation-induced metabolic changes in tumor-host interaction. Cancer Res 55:4151–4156

    PubMed  CAS  Google Scholar 

  91. Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Res 63:3847–3854

    PubMed  CAS  Google Scholar 

  92. Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–5223. doi:10.1158/0008-5472.CAN-05-4193

    Article  PubMed  CAS  Google Scholar 

  93. Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8:56–61. doi:10.1038/nrc2255

    Article  PubMed  CAS  Google Scholar 

  94. Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39:1358–1366. doi:10.1016/j.biocel.2007.03.021

    Article  PubMed  CAS  Google Scholar 

  95. Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1,000 micron in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024. doi:10.1364/OL.28.001022

    Article  PubMed  CAS  Google Scholar 

  96. Levene MJ, Dombeck DA, Kasischke KA, Molloy RP, Webb WW (2004) In vivo multiphoton microscopy of deep brain tissue. J Neurophysiol 91:1908–1912. doi:10.1152/jn.01007.2003

    Article  PubMed  Google Scholar 

  97. Marsh P, Burns D, Girkin J (2003) Practical implementation of adaptive optics in multiphoton microscopy. Opt Express 11:1123–1130

    Article  CAS  PubMed  Google Scholar 

  98. Bird D, Gu M (2002) Fibre-optic two-photon scanning fluorescence microscopy. J Microsc 208:35–48. doi:10.1046/j.1365-2818.2002.01059.x

    Article  PubMed  CAS  Google Scholar 

  99. Bird D, Gu M (2002) Resolution improvement in two-photon fluorescence microscopy with a single-mode fiber. Appl Opt 41:1852–1857. doi:10.1364/AO.41.001852

    Article  PubMed  CAS  Google Scholar 

  100. Bird D, Gu M (2003) Two-photon fluorescence endoscopy with a micro-optic scanning head. Opt Lett 28:1552–1554. doi:10.1364/OL.28.001552

    Article  PubMed  Google Scholar 

  101. Flusberg BA, Cocker ED, Piyawattanametha W, Jung JC, Cheung EL, Schnitzer MJ (2005) Fiber-optic fluorescence imaging. Nat Methods 2:941–950. doi:10.1038/nmeth820

    Article  PubMed  CAS  Google Scholar 

  102. Jung JC, Schnitzer MJ (2003) Multiphoton endoscopy. Opt Lett 28:902–904. doi:10.1364/OL.28.000902

    Article  PubMed  Google Scholar 

  103. Siegel J, Elson DS, Webb SE, Lee KC, Vlandas A, Gambaruto GL, Leveque-Fort S, Lever MJ, Tadrous PJ, Stamp GW, Wallace AL, Sandison A, Watson TF, Alvarez F, French PM (2003) Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles. Appl Opt 42:2995–3004. doi:10.1364/AO.42.002995

    Article  PubMed  Google Scholar 

  104. Ruck A, Hulshoff C, Kinzler I, Becker W, Steiner R (2007) SLIM: a new method for molecular imaging. Microsc Res Tech 70:485–492. doi:10.1002/jemt.20433

    Article  PubMed  CAS  Google Scholar 

  105. Provenzano PP, Eliceiri KW, Yan L, Ada-Nguema A, Conklin MW, Inman DR, Keely PJ (in press) Nonlinear optical imaging of cellular processes in breast cancer. Microsc Microanal

  106. Yan L, Rueden CT, White JG, Eliceiri KW (2006) Applications of combined spectral lifetime microscopy for biology. Biotechniques 41:249–251 253

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the DOD-CDMRP/BCRP: W81XWH-04-1-0428 to (PPP), NIH-NCI: R01-CA076537 (PJK) and NIH NIBIB: R01-EB000184 (KWE). We also thank members of the Keely lab and LOCI for their input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo P. Provenzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provenzano, P.P., Eliceiri, K.W. & Keely, P.J. Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26, 357–370 (2009). https://doi.org/10.1007/s10585-008-9204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9204-0

Keywords

Navigation