Skip to main content
Log in

Elastin-derived peptides increase invasive capacities of lung cancer cells by post-transcriptional regulation of MMP-2 and uPA

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Elastin-rich lung extracellular matrix is largely remodeled during tumor invasion. Elastin degradation produces peptides displaying a wide range of biological activities. These elastin derived peptides (EP) interact with the elastin receptor complex (ERC) but also bind to αVβ3 integrin and galectin-3. In this study, we explored the role of EP and their receptors in tumor progression of lung carcinomas. Non-invasive and invasive lung tumor cell lines were incubated in presence of kappa-elastin (κE) or with synthetic peptides displaying receptor-specific sequences (VGVAPG, GRKRK, AGVPGLGVG and AGVPGFGAG). Modified Boyden chamber assays revealed an increased invasive capacity of invasive cells induced by κE. EP treatment had no effect on cell proliferation but zymography analysis revealed an increase of pro-MMP-2 and uPA levels in the conditioned media of treated cells. Moreover, the active form of MMP-2 was increased in invasive cells. Interestingly, this regulation was not observed at the mRNA level and actinomycin D was unable to inhibit κE effects. We also observed that the regulation of proteases protein level following κE treatment was an early process detectable after 1 h. All these effects could not be inhibited by lactose and V14, two ERC antagonists, or by blocking antibodies against αVβ3 integrin and galectin-3. Finally, VGVAPG and GRKRK failed to reproduce κE effects whereas nonapeptides partially mimicked them. These results demonstrate that treatment with EP up-regulates invasiveness of lung tumor cells via the release of proteolytic enzymes. This modulation involves post-transcriptional mechanisms and a nonapeptide-receptor different from the ERC, αVβ3 integrin and galectin-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACTD:

Actinomycin D

AGVPGFGAG:

Ala-Gly-Val-Pro-Gly-Phe-Gly-Ala-Gly

AGVPGLGVG:

Ala-Gly-Val-Pro-Gly-Leu-Gly-Val-Gly

CD:

Circular dichroism

EBP:

Elastin binding protein

ECM:

Extracellular matrix

EDTA:

Ethylenediaminetetraacetic acid

EP:

Elastin derived peptides

ERC:

Elastin receptor complex

GRKRK:

Gly-Arg-Lys-Arg-Lys

κE:

Kappa-elastin

MMP:

Matrix metalloproteinase

Neu-1:

Neuraminidase-1

NMR:

Nuclear magnetic resonance

PMSF:

Phenylmethylsulfonyl fluoride

PPCA:

Protective protein/cathepsin A

S-Gal:

Spliced galactosidase

uPA:

Urokinase plasminogen activator

VGVAPG:

Val-Gly-Val-Ala-Pro-Gly

References

  1. Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    PubMed  CAS  Google Scholar 

  2. Mithieux SM, Weiss AS (2005) Elastin. Adv Protein Chem 70:437–461

    Article  PubMed  CAS  Google Scholar 

  3. Shapiro SD, Endicott SK, Province MA et al (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of d-aspartate and nuclear weapons-related radiocarbon. J Clin Invest 87:1828–1834

    Article  PubMed  CAS  Google Scholar 

  4. Werb Z, Banda MJ, McKerrow JH et al (1982) Elastases and elastin degradation. J Invest Dermatol 79(Suppl 1):154s–159s

    Article  PubMed  Google Scholar 

  5. Lapis K, Tímár J (2002) Role of elastin–matrix interactions in tumor progression. Semin Cancer Biol 12:209–217

    Article  PubMed  CAS  Google Scholar 

  6. Mecham RP, Hinek A, Griffin GL et al (1989) The elastin receptor shows structural and functional similarities to the 67-kDa tumor cell laminin receptor. J Biol Chem 264:16652–16657

    PubMed  CAS  Google Scholar 

  7. Mochizuki S, Brassart B, Hinek A (2002) Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem 277:44854–44863

    Article  PubMed  CAS  Google Scholar 

  8. Robinet A, Fahem A, Cauchard J-H et al (2005) Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP. J Cell Sci 118:343–356

    Article  PubMed  CAS  Google Scholar 

  9. Maeda I, Mizoiri N, Briones MPP et al (2007) Induction of macrophage migration through lactose-insensitive receptor by elastin-derived nonapeptides and their analog. J Pept Sci 13:263–268

    Article  PubMed  CAS  Google Scholar 

  10. Grosso LE, Scott M (1993) PGAIPG, a repeated hexapeptide of bovine and human tropoelastin, is chemotactic for neutrophils and Lewis lung carcinoma cells. Arch Biochem Biophys 305:401–404

    Article  PubMed  CAS  Google Scholar 

  11. Hauck M, Seres I, Kiss I et al (1995) Effects of synthesized elastin peptides on human leukocytes. Biochem Mol Biol Int 37:45–55

    PubMed  CAS  Google Scholar 

  12. Senior RM, Griffin GL, Mecham RP et al (1984) Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J Cell Biol 99:870–874

    Article  PubMed  CAS  Google Scholar 

  13. Debret R, Antonicelli F, Theill A et al (2005) Elastin-derived peptides induce a T-helper type 1 polarization of human blood lymphocytes. Arterioscler Thromb Vasc Biol 25:1353–1358

    Article  PubMed  CAS  Google Scholar 

  14. Brassart B, Randoux A, Hornebeck W et al (1998) Regulation of matrix metalloproteinase-2 (gelatinase A, MMP-2), membrane-type matrix metalloproteinase-1 (MT1-MMP) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression by elastin-derived peptides in human HT-1080 fibrosarcoma cell line. Clin Exp Metastasis 16:489–500

    Article  PubMed  CAS  Google Scholar 

  15. Ntayi C, Labrousse A-L, Debret R et al (2004) Elastin-derived peptides upregulate matrix metalloproteinase-2-mediated melanoma cell invasion through elastin-binding protein. J Invest Dermatol 122:256–265

    Article  PubMed  CAS  Google Scholar 

  16. Jung S, Hinek A, Tsugu A et al (1999) Astrocytoma cell interaction with elastin substrates: implications for astrocytoma invasive potential. Glia 25:179–189

    Article  PubMed  CAS  Google Scholar 

  17. Hinek A, Jung S, Rutka JT (1999) Cell surface aggregation of elastin receptor molecules caused by suramin amplified signals leading to proliferation of human glioma cells. Acta Neuropathol 97:399–407

    Article  PubMed  CAS  Google Scholar 

  18. Pocza P, Süli-Vargha H, Darvas Z et al (2008) Locally generated VGVAPG and VAPG elastin-derived peptides amplify melanoma invasion via the galectin-3 receptor. Int J Cancer 122:1972–1980

    Article  PubMed  CAS  Google Scholar 

  19. Long MM, King VJ, Prasad KU et al (1989) Elastin repeat peptides as chemoattractants for bovine aortic endothelial cells. J Cell Physiol 140:512–518

    Article  PubMed  CAS  Google Scholar 

  20. Brassart B, Fuchs P, Huet E et al (2001) Conformational dependence of collagenase (matrix metalloproteinase-1) up-regulation by elastin peptides in cultured fibroblasts. J Biol Chem 276:5222–5227

    Article  PubMed  CAS  Google Scholar 

  21. Maquart F-X, Pasco S, Ramont L et al (2004) An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity. Implication in tumor invasion. Crit Rev Oncol Hematol 49:199–202

    Article  PubMed  Google Scholar 

  22. Bisaccia F, Morelli MA, De Biasi M et al (1994) Migration of monocytes in the presence of elastolytic fragments of elastin and in synthetic derivates. Structure–activity relationships. Int J Pept Protein Res 44:332–341

    Article  PubMed  CAS  Google Scholar 

  23. Castiglione Morelli MA, Bisaccia F, Spisani S et al (1997) Structure–activity relationships for some elastin-derived peptide chemoattractants. J Pept Res 49:492–499

    Article  PubMed  CAS  Google Scholar 

  24. Bisaccia F, Castiglione-Morelli MA, Spisani S et al (1998) The amino acid sequence coded by the rarely expressed exon 26A of human elastin contains a stable beta-turn with chemotactic activity for monocytes. Biochemistry 37:11128–11135

    Article  PubMed  CAS  Google Scholar 

  25. Hinek A, Wrenn DS, Mecham RP et al (1988) The elastin receptor: a galactoside-binding protein. Science 239:1539–1541

    Article  PubMed  CAS  Google Scholar 

  26. Mecham RP, Hinek A, Entwistle R et al (1989) Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein. Biochemistry 28:3716–3722

    Article  PubMed  CAS  Google Scholar 

  27. Privitera S, Prody CA, Callahan JW et al (1998) The 67-kDa enzymatically inactive alternatively spliced variant of beta-galactosidase is identical to the elastin/laminin-binding protein. J Biol Chem 273:6319–6326

    Article  PubMed  CAS  Google Scholar 

  28. Duca L, Blanchevoye C, Cantarelli B et al (2007) The elastin receptor complex transduces signals through the catalytic activity of its Neu-1 subunit. J Biol Chem 282:12484–12491

    Article  PubMed  CAS  Google Scholar 

  29. Floquet N, Héry-Huynh S, Dauchez M et al (2004) Structural characterization of VGVAPG, an elastin-derived peptide. Biopolymers 76:266–280

    Article  PubMed  CAS  Google Scholar 

  30. Fuchs PFJ, Bonvin AMJJ, Bochicchio B et al (2006) Kinetics and thermodynamics of type VIII beta-turn formation: a CD, NMR, and microsecond explicit molecular dynamics study of the GDNP tetrapeptide. Biophys J 90:2745–2759

    Article  PubMed  CAS  Google Scholar 

  31. Moroy G, Alix AJP, Héry-Huynh S (2005) Structural characterization of human elastin derived peptides containing the GXXP sequence. Biopolymers 78:206–220

    Article  PubMed  CAS  Google Scholar 

  32. Plow EF, Haas TA, Zhang L et al (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788

    Article  PubMed  CAS  Google Scholar 

  33. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119:3901–3903

    Article  PubMed  CAS  Google Scholar 

  34. Bax DV, Rodgers UR, Bilek MMM et al (2009) Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J Biol Chem 284:28616–28623

    Article  PubMed  CAS  Google Scholar 

  35. Ochieng J, Furtak V, Lukyanov P (2004) Extracellular functions of galectin-3. Glycoconj J 19:527–535

    Article  PubMed  Google Scholar 

  36. Wang Y, Nangia-Makker P, Tait L et al (2009) Regulation of prostate cancer progression by galectin-3. Am J Pathol 174:1515–1523

    Article  PubMed  CAS  Google Scholar 

  37. Ochieng J, Warfield P, Green-Jarvis B et al (1999) Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin. J Cell Biochem 75:505–514

    Article  PubMed  CAS  Google Scholar 

  38. Devy J, Duca L, Cantarelli B et al (2010) Elastin-derived peptides enhance melanoma growth in vivo by upregulating the activation of Mcol-A (MMP-1) collagenase. Br J Cancer 103:1562–1570

    Article  PubMed  CAS  Google Scholar 

  39. Jacob M-P, Hornebeck W (1985) Isolation and characterization of insoluble and kappa-elastins. Front Matrix Biol 10:92–129

    CAS  Google Scholar 

  40. Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  41. Hinek A (1996) Biological roles of the non-integrin elastin/laminin receptor. Biol Chem 377:471–480

    PubMed  CAS  Google Scholar 

  42. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  PubMed  CAS  Google Scholar 

  43. Timar J, Lapis K, Fulop T et al (1991) Interaction between elastin and tumor cell lines with different metastatic potential; in vitro and in vivo studies. J Cancer Res Clin Oncol 117:232–238

    Article  PubMed  CAS  Google Scholar 

  44. Timár J, Diczházi C, Ladányi A et al (1995) Interaction of tumour cells with elastin and the metastatic phenotype. Ciba Found Symp 192:321–335; discussion 335–337

    Google Scholar 

  45. Martinella-Catusse C, Polette M, Noel A et al (2001) Down-regulation of MT1-MMP expression by the alpha3 chain of type IV collagen inhibits bronchial tumor cell line invasion. Lab Invest 81:167–175

    Article  PubMed  CAS  Google Scholar 

  46. Niki T, Kohno T, Iba S et al (2002) Frequent co-localization of Cox-2 and laminin-5 gamma2 chain at the invasive front of early-stage lung adenocarcinomas. Am J Pathol 160:1129–1141

    Article  PubMed  CAS  Google Scholar 

  47. Chang C, Werb Z (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37–S43

    PubMed  CAS  Google Scholar 

  48. Polette M, Nawrocki-Raby B, Gilles C et al (2004) Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol 49:179–186

    Article  PubMed  Google Scholar 

  49. Sidenius N, Blasi F (2003) The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 22:205–222

    Article  PubMed  CAS  Google Scholar 

  50. Senior RM, Griffin GL, Fliszar CJ et al (1991) Human 92- and 72-kilodalton type IV collagenases are elastases. J Biol Chem 266:7870–7875

    PubMed  CAS  Google Scholar 

  51. Dashevsky O, Varon D, Brill A (2009) Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. Int J Cancer 124:1773–1777

    Article  PubMed  CAS  Google Scholar 

  52. Angelucci A, D’Ascenzo S, Festuccia C et al (2000) Vesicle-associated urokinase plasminogen activator promotes invasion in prostate cancer cell lines. Clin Exp Metastasis 18:163–170

    Article  PubMed  CAS  Google Scholar 

  53. Dolo V, D’Ascenzo S, Giusti I et al (2005) Shedding of membrane vesicles by tumor and endothelial cells. Ital J Anat Embryol 110:127–133

    PubMed  CAS  Google Scholar 

  54. Moisa A, Fritz P, Eck A et al (2007) Growth/adhesion-regulatory tissue lectin galectin-3: stromal presence but not cytoplasmic/nuclear expression in tumor cells as a negative prognostic factor in breast cancer. Anticancer Res 27:2131–2139

    PubMed  CAS  Google Scholar 

  55. Duca L, Floquet N, Alix AJP et al (2004) Elastin as a matrikine. Crit Rev Oncol Hematol 49:235–244

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Simon Toupance is supported by a grant from the Ministry of Research. This work is supported by the Lions’s Clubs of Soissons, Villers-Cotterets and Crépy en Valois, by ACI Cancéropôle Grand Est 2007-2009 and by a grant from the CRP Santé of Luxembourg.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Birembaut.

Additional information

Philippe Birembaut and Laurent Debelle have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toupance, S., Brassart, B., Rabenoelina, F. et al. Elastin-derived peptides increase invasive capacities of lung cancer cells by post-transcriptional regulation of MMP-2 and uPA. Clin Exp Metastasis 29, 511–522 (2012). https://doi.org/10.1007/s10585-012-9467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9467-3

Keywords

Navigation