Skip to main content

Advertisement

Log in

Targeting IL4/IL4R for the treatment of epithelial cancer metastasis

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

While progress has been made in treating primary epithelial tumors, metastatic tumors remain largely incurable and still account for 85–90 % of all cancer-related deaths. Interleukin-4 (IL4), a Th2 cytokine, and the IL4/IL4 receptor (IL4R) interaction have well defined roles in the immune system. Yet, IL4 receptors are over-expressed by many epithelial cancers and could be a promising target for metastatic tumor therapy. The IL4/IL4R signaling axis is a strong promoter of pro-metastatic phenotypes in epithelial cancer cells including enhanced migration, invasion, survival, and proliferation. The promotion of breast cancer growth specifically is also supported in part by IL4-induced glutamine metabolism, and we have shown that IL4 is also capable of inducing glucose metabolism in breast cancer cells. Importantly, there are several types of FDA approved medications for use in asthma patients that inhibit the IL4/IL4R signaling axis. However, these approved medications inhibit both the type I IL4 receptor found on immune cells, and the type II IL4 receptor that is predominantly expressed by some non-hematopoietic cells including epithelial cancer cells. This article reviews existing therapies targeting IL4, IL4R, or IL4/IL4R signaling, and recent findings guiding the creation of novel therapies that specifically inhibit the type II IL4R, while taking into consideration effects on immune cells within the tumor microenvironment. Some of these therapies are currently in clinical trials for cancer patients, and may be exploitable for the treatment of metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

FDA:

Food and Drug Administration (U.S.A.)

γc:

Common gamma chain

IL4:

Interleukin 4

IL4R:

Interleukin 4 receptor

JAK:

Janus kinase

KO:

Knockout

MDSC:

Myeloid-derived suppressor cell

STAT:

Signal transducer and activator of transcription factor

TAM:

Tumor-associated macrophage

Th2:

T-helper type 2

TME:

Tumor microenvironment

Tc2:

Type 2 cytotoxic T cell

IRS:

Insuling receptor substrate protein

Tyk2:

Tyrosine kinase 2

mTOR:

Mammalian target of rapamycin

MAPK:

Mitogen-activated protein kinase

AKT:

Protein kinase B

PI3 K:

Phosphoinositide-3 kinase

ERK:

Extracellular signal-regulated kinase

pM:

Picomolar

Kd:

Dissociation constant

IL4-DM:

IL4 double mutein

NSCLC:

Non-small cell lung cancer

CML:

Chronic myeloid leukemia

AML:

Acute myeloid leukemia

GBM:

Glioblastoma multiforme

References

  1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29. doi:10.3322/caac.21254

    Article  PubMed  Google Scholar 

  2. Hallett MA, Venmar KT, Fingleton B (2012) Cytokine stimulation of epithelial cancer cells: the similar and divergent functions of IL-4 and IL-13. Cancer Res 72:6338–6343. doi:10.1158/0008-5472.CAN-12-3544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Li BH, Yang XZ, Li PD, Yuan Q, Liu XH, Yuan J, Zhang WJ (2008) IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells. Biochem Biophys Res Commun 369:554–560. doi:10.1016/j.bbrc.2008.02.052

    Article  CAS  PubMed  Google Scholar 

  4. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102. doi:10.1016/j.ccr.2009.06.018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Venmar KT, Kimmel DW, Cliffel DE, Fingleton B (2015) IL4 receptor α mediates enhanced glucose and glutamine metabolism to support breast cancer growth. Biochim Biophys Acta 1853:1219–1228. doi:10.1016/j.bbamcr.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  6. Venmar KT, Carter KJ, Hwang DG, Dozier EA, Fingleton B (2014) IL-4 receptor ILR4α regulates metastatic colonization by mammary tumors through multiple signaling pathways. Cancer Res. doi:10.1158/0008-5472.CAN-14-0093

    PubMed Central  PubMed  Google Scholar 

  7. Dufort FJ, Bleiman BF, Gumina MR, Blair D, Wagner DJ, Roberts MF, Abu-Amer Y, Chiles TC (2007) Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J Immunol 179:4953–4957

    Article  CAS  PubMed  Google Scholar 

  8. Wang R, Green DR (2012) Metabolic checkpoints in activated T cells. Nat Immunol 13:907–915. doi:10.1038/ni.2386

    Article  CAS  PubMed  Google Scholar 

  9. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  10. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738. doi:10.1146/annurev.immunol.17.1.701

    Article  CAS  PubMed  Google Scholar 

  11. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116:2777–2790. doi:10.1172/JCI28828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Surana R, Wang S, Xu W, Jablonski SA, Weiner LM (2014) IL4 limits the efficacy of tumor-targeted antibody therapy in a murine model. Cancer Immunol Res 2:1103–1112. doi:10.1158/2326-6066.CIR-14-0103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Todaro M, Lombardo Y, Francipane MG, Alea MP, Cammareri P, Iovino F, Di Stefano AB, Di Bernardo C, Agrusa A, Condorelli G, Walczak H, Stassi G (2008) Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ 15:762–772. doi:10.1038/sj.cdd.4402305

    Article  CAS  PubMed  Google Scholar 

  14. Mueller TD, Zhang J-L, Sebald W, Duschl A (2002) Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochim Biophys Acta 1592:237–250

    Article  CAS  PubMed  Google Scholar 

  15. Kotsimbos TC, Ghaffar O, Minshall EM, Humbert M, Durham SR, Pfister R, Menz G, Kay AB, Hamid QA (1998) Expression of the IL-4 receptor alpha-subunit is increased in bronchial biopsy specimens from atopic and nonatopic asthmatic subjects. J Allergy Clin Immunol 102:859–866

    Article  CAS  PubMed  Google Scholar 

  16. Andrews R, Rosa L, Daines M, Khurana Hershey G (2001) Reconstitution of a functional human type II IL-4/IL-13 receptor in mouse B cells: demonstration of species specificity. J Immunol 166:1716–1722

    Article  CAS  PubMed  Google Scholar 

  17. Dubois GR, Schweizer RC, Versluis C, Bruijnzeel-Koomen CA, Bruijnzeel PL (1998) Human eosinophils constitutively express a functional interleukin-4 receptor: interleukin-4—induced priming of chemotactic responses and induction of PI-3 kinase activity. Am J Respir Cell Mol Biol 19:691–699. doi:10.1165/ajrcmb.19.4.3208

    Article  CAS  PubMed  Google Scholar 

  18. Doucet C, Brouty-Boyé D, Pottin-Clémenceau C, Canonica GW, Jasmin C, Azzarone B (1998) Interleukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J Clin Invest 101:2129–2139. doi:10.1172/JCI741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Van der Velden VH, Naber BA, Wierenga-Wolf AF, Debets R, Savelkoul HF, Overbeek SE, Hoogsteden HC, Versnel MA (1998) Interleukin 4 receptors on human bronchial epithelial cells. An in vivo and in vitro analysis of expression and function. Cytokine 10:803–813. doi:10.1006/cyto.1998.0365

    Article  PubMed  Google Scholar 

  20. Siddiqui S, Mistry V, Doe C, Stinson S, Foster M, Brightling C (2010) Airway wall expression of OX40/OX40L and interleukin-4 in asthma. Chest 137:797–804. doi:10.1378/chest.09-1839

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ito T, Suzuki S, Kanaji S, Shiraishi H, Ohta S, Arima K, Tanaka G, Tamada T, Honjo E, Garcia KC, Kuroki R, Izuhara K (2009) Distinct structural requirements for interleukin-4 (IL-4) and IL-13 binding to the shared IL-13 receptor facilitate cellular tuning of cytokine responsiveness. J Biol Chem 284:24289–24296. doi:10.1074/jbc.M109.007286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. LaPorte SL, Juo ZS, Vaclavikova J, Colf LA, Qi X, Heller NM, Keegan AD, Garcia KC (2008) Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132:259–272. doi:10.1016/j.cell.2007.12.030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Obiri NI, Hillman GG, Haas GP, Sud S, Puri RK (1993) Expression of high affinity interleukin-4 receptors on human renal cell carcinoma cells and inhibition of tumor cell growth in vitro by interleukin-4. J Clin Invest 91:88–93. doi:10.1172/JCI116205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Obiri NI, Siegel JP, Varricchio F, Puri RK (1994) Expression of high-affinity IL-4 receptors on human melanoma, ovarian and breast carcinoma cells. Clin Exp Immunol 95:148–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Leland P, Taguchi J, Husain SR, Kreitman RJ, Pastan I, Puri RK (2000) Human breast carcinoma cells express type II IL-4 receptors and are sensitive to antitumor activity of a chimeric IL-4-Pseudomonas exotoxin fusion protein in vitro and in vivo. Mol Med 6:165–178

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Kioi M, Takahashi S, Kawakami M, Kawakami K, Kreitman RJ, Puri RK (2005) Expression and targeting of interleukin-4 receptor for primary and advanced ovarian cancer therapy. Cancer Res 65:8388–8396. doi:10.1158/0008-5472.CAN-05-1043

    Article  CAS  PubMed  Google Scholar 

  27. Puri RK, Leland P, Kreitman RJ, Pastan I (1994) Human neurological cancer cells express interleukin-4 (IL-4) receptors which are targets for the toxic effects of IL4-Pseudomonas exotoxin chimeric protein. Int J Cancer 58:574–581

    Article  CAS  PubMed  Google Scholar 

  28. Husain SR, Gill P, Kreitman RJ, Pastan I, Puri RK (1997) Interleukin-4 receptor expression on AIDS-associated Kaposi’s sarcoma cells and their targeting by a chimeric protein comprised of circularly permuted interleukin-4 and Pseudomonas exotoxin. Mol Med 3:327–338

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Kawakami K, Leland P, Puri RK (2000) Structure, function, and targeting of interleukin 4 receptors on human head and neck cancer cells. Cancer Res 60:2981–2987

    CAS  PubMed  Google Scholar 

  30. Clinicaltrials.gov (2015) https://clinicaltrials.gov. Accessed June 5, 2015

  31. Kasaian MT, Miller DK (2008) IL-13 as a therapeutic target for respiratory disease. Biochem Pharmacol 76:147–155. doi:10.1016/j.bcp.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  32. Conticello C, Pedini F, Zeuner A, Patti M, Zerilli M, Stassi G, Messina A, Peschle C, De Maria R (2004) IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins. J Immunol 172:5467–5477

    Article  CAS  PubMed  Google Scholar 

  33. Roca H, Craig MJ, Ying C, Varsos ZS, Czarnieski P, Alva AS, Hernandez J, Fuller D, Daignault S, Healy PN, Pienta KJ (2011) IL-4 induces proliferation in prostate cancer PC3 cells under nutrient-depletion stress through the activation of the JNK-pathway and survivin upregulation. J Cell Biochem 113:1569–1580. doi:10.1002/jcb.24025

    Google Scholar 

  34. Prokopchuk O, Liu Y, Henne-Bruns D, Kornmann M (2005) Interleukin-4 enhances proliferation of human pancreatic cancer cells: evidence for autocrine and paracrine actions. Br J Cancer 92:921–928. doi:10.1038/sj.bjc.6602416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Maes T, Joos GF, Brusselle GG (2012) Targeting interleukin-4 in asthma: lost in translation? Am J Respir Cell Mol Biol 47:261–270. doi:10.1165/rcmb.2012-0080TR

    Article  CAS  PubMed  Google Scholar 

  36. Kuperman DA, Schleimer RP (2008) Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr Mol Med 8:384–392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Oh CK, Geba GP, Molfino N (2010) Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. Eur Respir Rev 19:46–54. doi:10.1183/09059180.00007609

    Article  CAS  PubMed  Google Scholar 

  38. Murata T, Noguchi PD, Puri RK (1995) Receptors for interleukin (IL)-4 do not associate with the common chain, and IL-4 induces the phosphorylation of JAK2 tyrosine kinase in human colon carcinoma cells. J Biol Chem 270:30829–30836. doi:10.1074/jbc.270.51.30829

    Article  CAS  PubMed  Google Scholar 

  39. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD (2009) The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30:832–844. doi:10.1016/j.immuni.2009.04.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Miklossy G, Hilliard TS, Turkson J (2013) Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 12:611–629. doi:10.1038/nrd4088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296:1653–1655. doi:10.1126/science.1071545

    Article  CAS  PubMed  Google Scholar 

  42. Li BH, Yang XZ, Li PD, Yuan Q, Liu XH, Yuan J, Zhang WJ (2008) IL-4/Stat6 activities correlate with apoptosis and metastasis in colon cancer cells. Biochem Biophys Res Commun 369:554–560. doi:10.1016/j.bbrc.2008.02.052

    Article  CAS  PubMed  Google Scholar 

  43. Siemasko KF, Chong AS, Williams JW, Bremer EG, Finnegan A (1996) Regulation of B cell function by the immunosuppressive agent leflunomide. Transplantation 61:635–642

    Article  CAS  PubMed  Google Scholar 

  44. Cherwinski HM, Byars N, Ballaron SJ, Nakano GM, Young JM, Ransom JT (1995) Leflunomide interferes with pyrimidine nucleotide biosynthesis. Inflamm Res 44:317–322

    Article  CAS  PubMed  Google Scholar 

  45. Mattar T, Kochhar K, Bartlett R, Bremer EG, Finnegan A (1993) Inhibition of the epidermal growth factor receptor tyrosine kinase activity by leflunomide. FEBS Lett 334:161–164

    Article  CAS  PubMed  Google Scholar 

  46. Friedman Ohana R, Kirkland TA, Woodroofe CC, Levin S, Uyeda HT, Otto P, Hurst R, Robers MB, Zimmerman K, Encell LP, Wood KV (2015) Deciphering the cellular targets of bioactive compounds using a chloroalkane capture tag. ACS Chem Biol. doi:10.1021/acschembio.5b00351

    PubMed  Google Scholar 

  47. Gibeon D, Menzies-Gow AN (2012) Targeting interleukins to treat severe asthma. Expert Rev Respir Med 6:423–439. doi:10.1586/ers.12.38

    Article  CAS  PubMed  Google Scholar 

  48. Ohara J, Paul WE (1985) Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature 315:333–336

    Article  CAS  PubMed  Google Scholar 

  49. Umansky V, Sevko A (2013) Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron 6:169–177. doi:10.1007/s12307-012-0126-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Leen AM, Sukumaran S, Watanabe N, Mohammed S, Keirnan J, Yanagisawa R, Anurathapan U, Rendon D, Heslop HE, Rooney CM, Brenner MK, Vera JF (2014) Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol Ther 22:1211–1220. doi:10.1038/mt.2014.47

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Wang H-W, Joyce JA (2010) Alternative activation of tumor-associated macrophages by IL-4: priming for protumoral functions. Cell Cycle 9:4824–4835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51. doi:10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  Google Scholar 

  53. Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P (2012) Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression. Cancer Res 72:1373–1383. doi:10.1158/0008-5472.CAN-11-2772

    Article  CAS  PubMed  Google Scholar 

  54. Beck LA, Thaçi D, Hamilton JD, Graham NM, Bieber T, Rocklin R, Ming JE, Ren H, Kao R, Simpson E, Ardeleanu M, Weinstein SP, Pirozzi G, Guttman-Yassky E, Suárez-Fariñas M, Hager MD, Stahl N, Yancopoulos GD, Radin AR (2014) Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med 371:130–139. doi:10.1056/NEJMoa1314768

    Article  PubMed  Google Scholar 

  55. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, Wang L, Kirkesseli S, Rocklin R, Bock B, Hamilton J, Ming JE, Radin A, Stahl N, Yancopoulos GD, Graham N, Pirozzi G (2013) Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 368:2455–2466. doi:10.1056/NEJMoa1304048

    Article  CAS  PubMed  Google Scholar 

  56. Duppatla V, Gjorgjevikj M, Schmitz W, Hermanns HM, Schäfer CM, Kottmair M, Müller T, Sebald W (2014) IL-4 analogues with site-specific chemical modification at position 121 inhibit IL-4 and IL-13 biological activities. Bioconjugate Chem 25:52–62. doi:10.1021/bc400307k

    Article  CAS  Google Scholar 

  57. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402. doi:10.1016/j.stem.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  58. Gandhi H, Worch R, Kurgonaite K, Hintersteiner M, Schwille P, Bökel C, Weidemann T (2014) Dynamics and interaction of interleukin-4 receptor subunits in living cells. Biophys J 107:2515–2527. doi:10.1016/j.bpj.2014.07.077

    Article  CAS  PubMed  Google Scholar 

  59. Kruse N, Tony HP, Sebald W (1992) Conversion of human interleukin-4 into a high affinity antagonist by a single amino acid replacement. EMBO J 11:3237–3244

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Kruse N, Tony HP, Sebald W (1992) Conversion of human interleukin-4 into a high affinity antagonist by a single amino acid replacement. EMBO J 11:3237–3244

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Zhang J-L, Buehner M, Sebald W (2002) Functional epitope of common gamma chain for interleukin-4 binding. Eur J Biochem 269:1490–1499

    Article  CAS  PubMed  Google Scholar 

  62. Junttila IS, Creusot RJ, Moraga I, Bates DL, Wong MT, Alonso MN, Suhoski MM, Lupardus P, Meier-Schellersheim M, Engleman EG, Utz PJ, Fathman CG, Paul WE, Garcia KC (2012) Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nat Chem Biol 8:990–998. doi:10.1038/nchembio.1096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Medicenna Therapeutics Inc. https://medicenna.com. Accessed June 5, 2015

  64. Kienzle N, Olver S, Buttigieg K, Groves P, Janas ML, Baz A, Kelso A (2005) Progressive differentiation and commitment of CD8+ T cells to a poorly cytolytic CD8 low phenotype in the presence of IL-4. J Immunol 174:2021–2029

    Article  CAS  PubMed  Google Scholar 

  65. Kienzle N, Buttigieg K, Groves P, Kawula T, Kelso A (2002) A clonal culture system demonstrates that IL-4 induces a subpopulation of noncytolytic T cells with low CD8, perforin, and granzyme expression. J Immunol 168:1672–1681

    Article  CAS  PubMed  Google Scholar 

  66. Helmich BK, Dutton RW (2001) The role of adoptively transferred CD8 T cells and host cells in the control of the growth of the EG7 thymoma: factors that determine the relative effectiveness and homing properties of Tc1 and Tc2 effectors. J Immunol 166:6500–6508

    Article  CAS  PubMed  Google Scholar 

  67. Kemp RA, Ronchese F (2001) Tumor-specific Tc1, but not Tc2, cells deliver protective antitumor immunity. J Immunol 167:6497–6502

    Article  CAS  PubMed  Google Scholar 

  68. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421. doi:10.1016/j.ccr.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  69. Van Kempen LCL, Coussens LM (2002) MMP9 potentiates pulmonary metastasis formation. Cancer Cell 2:251–252

    Article  PubMed  Google Scholar 

  70. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi:10.1038/nri2506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78. doi:10.1038/nrc1256

    Article  CAS  PubMed  Google Scholar 

  72. Srabovici N, Mujagic Z, Mujanovic-Mustedanagic J, Muminovic Z, Softic A, Begic L (2011) Interleukin 13 expression in the primary breast cancer tumour tissue. Biochem medica 21:131–138

    Article  Google Scholar 

  73. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419–1430. doi:10.1007/s00262-011-1028-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Ostojic A, Vrhovac R, Verstovsek S (2011) Ruxolitinib: a new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis. Future Oncol 7:1035–1043. doi:10.2217/fon.11.81

    Article  CAS  PubMed  Google Scholar 

  75. Borish LC, Nelson HS, Lanz MJ, Claussen L, Whitmore JB, Agosti JM, Garrison L (1999) Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 160:1816–1823. doi:10.1164/ajrccm.160.6.9808146

    Article  CAS  PubMed  Google Scholar 

  76. Hart TK, Blackburn MN, Brigham-Burke M, Dede K, Al-Mahdi N, Zia-Amirhosseini P, Cook RM (2002) Preclinical efficacy and safety of pascolizumab (SB 240683): a humanized anti-interleukin-4 antibody with therapeutic potential in asthma. Clin Exp Immunol 130:93–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported R01 CA157781 awarded to BF, and by F31 CA183539 awarded to KVB. Both awards were made by the U.S. National Institutes of Health/National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Fingleton.

Ethics declarations

Conflicts of interest

No conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankaitis, K.V., Fingleton, B. Targeting IL4/IL4R for the treatment of epithelial cancer metastasis. Clin Exp Metastasis 32, 847–856 (2015). https://doi.org/10.1007/s10585-015-9747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9747-9

Keywords

Navigation