Skip to main content

Advertisement

Log in

The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Heparan sulfate mimetics, which we have called the PG500 series, have been developed to target the inhibition of both angiogenesis and heparanase activity. This series extends the technology underpinning PI-88, a mixture of highly sulfated oligosaccharides which reached Phase III clinical development for hepatocellular carcinoma. Advances in the chemistry of the PG500 series provide numerous advantages over PI-88. These new compounds are fully sulfated, single entity oligosaccharides attached to a lipophilic moiety, which have been optimized for drug development. The rational design of these compounds has led to vast improvements in potency compared to PI-88, based on in vitro angiogenesis assays and in vivo tumor models. Based on these and other data, PG545 has been selected as the lead clinical candidate for oncology and is currently undergoing formal preclinical development as a novel treatment for advanced cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257. doi:10.1038/35025220

    Article  CAS  PubMed  Google Scholar 

  2. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410. doi:10.1038/nrc1093

    Article  CAS  PubMed  Google Scholar 

  3. Herbst RS (2006) Therapeutic options to target angiogenesis in human malignancies. Expert Opin Emerg Drugs 11:635–650. doi:10.1517/14728214.11.4.635

    Article  CAS  PubMed  Google Scholar 

  4. Sasisekharan R, Shriver Z, Venkataraman G et al (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2:521–528. doi:10.1038/nrc842

    Article  CAS  PubMed  Google Scholar 

  5. Wegrowski Y, Maquart FX (2004) Involvement of stromal proteoglycans in tumour progression. Crit Rev Oncol Hematol 49:259–268. doi:10.1016/j.critrevonc.2003.10.005

    Article  PubMed  Google Scholar 

  6. Lever R, Page CP (2002) Novel drug development opportunities for heparin. Nat Rev Drug Discov 1:140–148. doi:10.1038/nrd724

    Article  CAS  PubMed  Google Scholar 

  7. Presta M, Leali D, Stabile H et al (2003) Heparin derivatives as angiogenesis inhibitors. Curr Pharm Des 9:553–566. doi:10.2174/1381612033391379

    Article  CAS  PubMed  Google Scholar 

  8. Karoli T, Liu L, Fairweather JK et al (2005) Synthesis, biological activity, and preliminary pharmacokinetic evaluation of analogues of a phosphosulfomannan angiogenesis inhibitor (PI-88). J Med Chem 48:8229–8236. doi:10.1021/jm050618p

    Article  CAS  PubMed  Google Scholar 

  9. Zetser A, Bashenko Y, Edovitsky E et al (2006) Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res 66:1455–1463. doi:10.1158/0008-5472.CAN-05-1811

    Article  CAS  PubMed  Google Scholar 

  10. Cohen-Kaplan V, Naroditsky I, Zetser A et al (2008) Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer 123:2566–2573. doi:10.1002/ijc.23898

    Article  CAS  PubMed  Google Scholar 

  11. Vlodavsky I, Elkin M, Abboud-Jarrous G et al (2008) Heparanase: one molecule with multiple functions in cancer progression. Connect Tissue Res 49:207–210. doi:10.1080/03008200802143281

    Article  CAS  PubMed  Google Scholar 

  12. Cochran S, Li C, Fairweather JK et al (2003) Probing the interactions of phosphosulfomannans with angiogenic growth factors by surface plasmon resonance. J Med Chem 46:4601–4608. doi:10.1021/jm030180y

    Article  CAS  PubMed  Google Scholar 

  13. Cochran S, Li CP, Ferro V (2008). A surface plasmon resonance-based solution affinity assay for heparan sulfate-binding proteins. Glycoconjuate J. doi:10.1007/s10719-008-9210-0

  14. Bisio A, Mantegazza A, Urso E et al (2007) High-performance liquid chromatographic/mass spectrometric studies on the susceptibility of heparin species to cleavage by heparanase. Semin Thromb Hemost 33:488–495. doi:10.1055/s-2007-982079

    Article  CAS  PubMed  Google Scholar 

  15. McKenzie E, Young K, Hircock M et al (2003) Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J 373:423–435. doi:10.1042/BJ20030318

    Article  CAS  PubMed  Google Scholar 

  16. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108. doi:10.1016/0006-2952(73)90196-2

    Article  CAS  PubMed  Google Scholar 

  17. Nicosia RF, Ottinetti A (1990) Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26:119–128. doi:10.1007/BF02624102

    Article  CAS  PubMed  Google Scholar 

  18. Min J-K, Han K-Y, Kim E-C et al (2004) Capsaicin Inhibits in Vitro and in Vivo Angiogenesis. Cancer Res 64:644–651. doi:10.1158/0008-5472.CAN-03-3250

    Article  CAS  PubMed  Google Scholar 

  19. Auerbach R, Lewis R, Shinners B et al (2003) Angiogenesis assays: a critical overview. Clin Chem 49:32–40. doi:10.1373/49.1.32

    Article  CAS  PubMed  Google Scholar 

  20. Ferro V, Dredge K, Liu L et al (2007) PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Semin Thromb Hemost 33:557–568. doi:10.1055/s-2007-982088

    Article  CAS  PubMed  Google Scholar 

  21. Ebos JML, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239. doi:10.1016/j.ccr.2009.01.021

    Article  CAS  PubMed  Google Scholar 

  22. Paez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231. doi:10.1016/j.ccr.2009.01.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Ralf Brandt (vivoPharm, Adelaide, Australia) for the HT29 data, Job Harenberg (University of Mannheim, Germany) for the anticoagulant data and Bruce Wyse (Tetra-Q, Brisbane, Australia) for supply of the rat aortic tissue. We also thank Laurence Marton (Progen Pharmaceuticals Inc., Redwood City, CA) for review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dredge.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

The lethal concentration of PG500 series compounds that kill 50% (LC50) of HUVECs in a 48-hour cytotoxicity assay (PDF 13 kb)

Fig. S1

The effect of PI-88 on experimental lung metastases in the B16 melanoma model (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dredge, K., Hammond, E., Davis, K. et al. The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Invest New Drugs 28, 276–283 (2010). https://doi.org/10.1007/s10637-009-9245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9245-5

Keywords

Navigation