Skip to main content

Advertisement

Log in

Glycosylation: a hallmark of cancer?

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The hallmarks of cancer are characterized by functional capabilities that allow cancer cells to survive, proliferate and disseminate during the multistep tumorigenesis. Cancer being a cellular disease, changes in cellular glycoproteins play an important role in malignant transformation and cancer progression. The present review summarizes various studies that depicted correlation of glycosylation with tumor initiation, progression and metastasis, which are helpful in early diagnosis, disease monitoring and prognosis. The results are further strengthened by our reports, which depicted alterations in sialylation and fucosylation in different cancers. Alterations in glycosyltransferases are also involved in formation of various tumor antigens (e.g. Sialyl Lewis x) which serves as ligand for the cell adhesion molecule, selectin which is involved in adhesion of cancer cells to vascular endothelium and thus contributes to hematogenous metastasis. Increased glycosylation accompanied by alterations in glycosyltranferases, glycosidases, glycans and mucins (MUC)s are also involved in loss of E-cadherin, a key molecule implicated in metastatic dissemination of cells. The present review also summarizes the correlation of glycosylation with all the hallmarks of cancer. The enormous progress in the design of novel inhibitors of pathway intermediates of sialylation and fucosylation can prove wonders in combating the dreadful disease. The results provide the evidence that altered glycosylation is linked to tumor initiation, progression and metastasis. Hence, it can be considered as a new hallmark of cancer development and strategies to develop novel glycosylation targeted molecules should be strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CEA:

Carcinoembryonic antigen

ECM:

Extra cellular matrix

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial mesenchymal transition

GDP:

Guanosine diphosphate

IGF:

Insulin like growth factor

FUT:

Fucosyl transferase

MMPs:

Matrix metalloproteinase

MUC:

Mucin

OSCC:

Oral squamous cell carcinoma

SLe:

Sialyl Lewis

ST:

Sialyltransferase

TSA:

Total sialic acid

VEGF:

Vascular endothelial growth factor

References

  1. Reis, C.A., Osorio, H., Silva, L., Gomes, C., David, L.: Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 63, 322–329 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Kam, R.K., Poon, T.C.: The potentials of glycomics in biomarker discovery. Clin. Proteomics. 4, 67–79 (2008)

    Article  CAS  Google Scholar 

  3. Munkley, J., Elliott, D.J.: Hallmarks of glycosylation in cancer. Oncotarget. 7, 35478–35489 (2016)

    PubMed  PubMed Central  Google Scholar 

  4. Karavani, V.P.: Aiming the sweet side of cancer: aberrant glycosylation as possible target for personalized medicine. Cancer Lett. 352, 101–112 (2014)

    Google Scholar 

  5. Pinho, S.S., Reis, C.A.: Glycosylation in cancer: mechanism and clinical implications. Nat. Rev. Cancer. 15, 540–555 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Shah, M.H., Telang, S.D., Shah, P.M., Patel, P.S.: Tissue and serum α2-3-and α2-6-linkage specific sialylation changes in oral carcinogenesis. Glycoconj. J. 25, 279–290 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. Shah, M.H., Telang, S.D., Raval, G.N., Shah, P.M., Patel, P.S.: Serum fucosylation changes in oral cancer and oral precancerous conditions. Cancer. 113, 336–346 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Bhanushree, R.: Clinical relevance of serum total sialic acid in oral leukoplakia and oral squamous cell carcinoma – a randomized study. Global Journal For Research Analysis. 4, 17–19 (2015)

    Google Scholar 

  9. Kadam, C.Y., Katkam, R.V., Suryakar, A.N., Kumbar, K.M., Kadam, D.P.: Biochemical markers in oral cancer. Biomed. Res. 22, 76–80 (2011)

    CAS  Google Scholar 

  10. Sawney, H., Kumar, C.A.: Correlation of serum biomarkers (TSA & LSA) and epithelial dysplasia in early diagnosis of oral precancer and oral cancer. Cancer Biomark. 10, 43–49 (2011)

    Article  Google Scholar 

  11. Joshi, M., Patil, R.: Estimation and comparative study of serum total sialic acid levels as tumor markers in oral cancer and precancer. J. Cancer Res. Ther. 6, 263–266 (2010)

    Article  PubMed  Google Scholar 

  12. Raval, G.N., Parekh, L.J., Patel, D.D., Jha, F.P., Sainger, R.N., Patel, P.S.: Clinical usefulness of alterations in sialic acid, sialyl transferase and sialoproteins in breast cancer. Indian J. Clin. Biochem. 19, 60–71 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozturk, L.K., Emekli-Alturfan, E., Kasikcy, E., Demir, G., Yarat, A.: Salivary total sialic acid levels increase in breast cancer patients: a preliminary study. Med. Chem. 7, 443–447 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. Patel, P.S., Rawal, G.N., Balar, D.B.: Importance of serum sialic acid and lactate dehydrogenase in diagnosis and treatment monitoring of cervical cancer patients. Gynecol. Oncol. 50, 294–299 (1993)

    Article  CAS  PubMed  Google Scholar 

  15. Patel, P.S., Adhvaryu, S.G., Balar, D.B., Parikh, B.J., Shah, P.M.: Clinical application of serum levels of sialic acid, fucose and seromucoid fraction as tumor markers in human leukemias. Anticancer Res. 14, 747–751 (1994)

    CAS  PubMed  Google Scholar 

  16. Patel, P.S., Adhvaryu, S.G., Balar, D.B.: Serum glycoconjugates in patients with anemia and myeloid leukemia. Tumori. 74, 639–634 (1988)

    CAS  PubMed  Google Scholar 

  17. Vajaria, B.N., Patel, K.R., Begum, R., et al.: Salivary Glyco-sialylation changes monitors oral carcinogenesis. Glycoconj. J. 31, 649–659 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Cylwik, B., Chrostek, L., Szmitkowski, M.: Diagnostic value of total and lipid-bound sialic acid in malignancies. Pol. Merkur. Lekarski. 19, 237–241 (2005)

    CAS  PubMed  Google Scholar 

  19. Suer Gokmen, S., Kazezoglu, C., Tabakoglu, E., Altıay, G., Gungor, O., Ture, M.: Serum total sialic acid levels in lung cancer patients of different histological types with and no extrapulmonary metastases. Turk. J. Biochem. 29, 262–267 (2004)

    Google Scholar 

  20. Siddhartha, Bhandary, S., Kumari, S., Shetty, R., Babu, S., Shetty, S.: Status of serum sialic acid, antioxidant and lipid peroxidation in head and neck cancer patients. Res. J. Pharm., Biol. Chem. Sci. 2, 1–5 (2011)

    Google Scholar 

  21. Cebi, A., Mert, H., Mert, N.: Evaluation of some tumor markers, acute phase proteins, sialic acid and lipid bound sialic acid before and after chemotherapy in patients with stomach cancer. Medical Science and Discovery. 3, 22–27 (2016)

    Google Scholar 

  22. Paskowska, A., Borbec, H., Semczuk, A., Cybulski, M.: Sialic acid concentration in serum and tissue of endometrial cancer patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 76, 211–215 (1998)

    Article  Google Scholar 

  23. Dall’Olio, F., Chiricolo, M., D’Errico, A., Gruppioni, E., Altimari, A., Fiorentino, M., et al.: Expression of beta-galactoside alpha2, 6 sialyl transferase and of alpha2, 6-sialylated glycoconjugates in normal human liver, hepatocarcinoma and cirrhosis. Glycobiology. 14, 39–49 (2004)

    Article  PubMed  Google Scholar 

  24. Yamamoto, H., Saito, H., Kaneko, Y., et al.: Alpha 2, 3-sialyl transferase mRNA and alpha2, 3-linked glycoprotein sialylation are increased in malignant gliomas. Brain Res. 755, 175–179 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Vajaria, B.N., Patel, K.R., Begum, R., Shah, F.D., Patel, J.B., Joshi, G.M., et al.: Significance of glycosyltransferases: ST3GAL1, FUT3, FUT5 and FUT6 transcripts in oral cancer. Glycobiology Insights. 4, 7–14 (2014)

    Google Scholar 

  26. Reuters, G., Struwe, R., Feigel, J., Brede, R., Bumm, P., Schauer, R.: Analysis of carbohydrate composition and sialidase activity in oral secretions of patients with tumors in the upper aerodigestive tract. Eur. Arch. Otorhinolaryngol. 249, 5–11 (1992)

    Article  Google Scholar 

  27. Sonmez, H., Suer, S., Gungor, Z., Baloglu, H., Kokoglu, E.: Tissue and serum sialidase levels in breast cancer. Cancer Lett. 136, 75–78 (1999)

    Article  CAS  PubMed  Google Scholar 

  28. Miyagi, T., Yamaguchi, K.: Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology. 22, 880–896 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Lopes-Morales, D., Velasquez-Marquez, N., Valenzueka, O., Santos-Lopez, G., Reyes-Levya, J., Vallejo-Ruiz, V.: Enhanced sialyltransferases transcription in cervical epithelial neoplasia. Investig. Clin. 50, 45–53 (2009)

    Google Scholar 

  30. Wang, P.H., Li, Y.F., Juang, C.M., Lee, Y.R., Chao, H.T., Ng, H.T., et al.: Expression of sialyl transferase family members in cervix squamous cell carcinoma correlates with lymph node metastasis. Gynecol. Oncol. 86, 45–52 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. Wang, P.H., Li, Y.F., Juang, C.M., Lee, Y.R., Chao, H.T., Tsai, Y.C.: Altered mRNA expression of sialyltransferase in squamous cell carcinoma of the cervix. Gynecol. Oncol. 2001(83), 121–127 (2001)

    Article  Google Scholar 

  32. Schneider, F., Kemmner, W., Haensch, W., Franke, G., Gretschel, S., Karsten, U., et al.: Overexpression of sialyltransferase CMP-sialic acid: Galbeta1,3GalNAc-R alpha6-sialyltransferase is related to poor survival in human colorectal carcinoma. Cancer Res. 61, 4605–4611 (2001)

    CAS  PubMed  Google Scholar 

  33. Picco, G., Julien, S., Brockhausen, I., Beatson, R., Antonopoulos, A., Haslam, S., et al.: Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology. 20, 1241–1250 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Recchi, M.A., Hebbar, M., Hornez, L., Harduin-Lepers, A., Peyrat, J.P., Delannoy, P.: Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res. 58, 4066–4070 (1998)

    CAS  PubMed  Google Scholar 

  35. Videira, P.A., Correia, M., Malagolini, N., Crespo, H.J., Ligeiro, D., Calais, F., et al.: ST3Gal I sialyltransferase relevance in bladder cancer tissues and cell lines. BMC Cancer. 9, 357 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, P.H., Lee, W.L., Juang, C.M., Yang, Y.H., Lo, W.H., Lai, C.R.: Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol. Oncol. 99, 631–639 (2005)

    Article  CAS  PubMed  Google Scholar 

  37. Natoni, A., Macauley, M.S., O’Dwyer, M.E.: Targeting selectins and their ligands in cancer. Front Oncol. 6, 93 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Trinchera, M., Malagolini, N., Chiricolo, M., Santini, D., Minni, F., Caretti, A., et al.: The biosynthesis of the selectin-ligand sialyl Lewis x in colorectal cancer tissues is regulated by fucosyltransferase VI and can be inhibited by an RNA interference-based approach. Int. J. Biochem. Cell Biol. 43, 130–139 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. Hanski, C., Klussmann, E., Wang, J., Böhm, C., Ogorek, D., Hanski, M.L., et al.: Fucosyltransferase III and sialyl-Lex expression correlate in cultured colon carcinoma cells but not in colon carcinoma tissue. Glycoconj. J. 13, 727–733 (1996)

    Article  CAS  PubMed  Google Scholar 

  40. Ogawa, J.I., Inoue, H., Koide, S.: α −2,3 sialyltrasferase type 3 N and α-1,3fucosyl transferase type VII are related to sialyl Lewis (x) synthesis and patients survival from lung carcinoma. Cancer. 79, 1678–1685 (1997)

    Article  CAS  PubMed  Google Scholar 

  41. Yan, X., Lin, Y., Liu, S., Aziz, F., Yan, Q.: Fucosyltranferase IV (FUT4) as an effective biomarker for the diagnosis of breast cancer. Biomed. Pharmacother. 70, 299–304 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. Carvalho, A.S., Harduin-Lepers, A., Magalhaes, A., Machado, E., Mendes, N., Costa, L.T.: Differential expression of α-2, 3-sialyltransferases and α-1, 3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. Int. J. Biochem. Cell Biol. 42, 80–89 (2010)

    Article  CAS  PubMed  Google Scholar 

  43. Petretti, T., Kemmner, W., Schulze, B., Schlag, P.M.: Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut. 46, 359–366 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kudo, T., Ikehara, Y., Togayachi, A., et al.: Up-regulation of a set of glycosyltransferase genes in human colorectal cancer. Lab. Investig. 78, 797–811 (1998)

    CAS  PubMed  Google Scholar 

  45. Thompson, S., Turner, G.A.: Elevated levels of abnormally-fucosylated haptoglobins in cancer sera. Br. J. Cancer. 56, 605–610 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shirahama, T., Ikoma, M., Muramatsu, T., Kayajima, T., Ohi, Y., Tsushima, T.: The binding site for fucose-binding proteins of Lotus tetragonolobus is a prognostic marker for transitional cell carcinoma of the human urinary bladder. Cancer. 72, 1329–1334 (1993)

    Article  CAS  PubMed  Google Scholar 

  47. Wang, J.W., Ambros, R.A., Weber, P.B., Rosana, T.G.: Fucosyltransferase and alpha-L-fucosidase activities and fucose levels in normal and malignant endometrial tissue. Cancer Res. 55, 3654–3658 (1995)

    CAS  PubMed  Google Scholar 

  48. Abdel-Aleem, H., Ahmed, A., Sabra, A.M., Zakhari, M., Soliman, M., Hamed, H.: Serum alpha L-fucosidase enzyme activity in ovarian and other female genital tract tumors. Int. J. Gynaecol. Obstet. 55, 273–279 (1996)

    Article  CAS  PubMed  Google Scholar 

  49. Vajaria, B.N., Patel, K.R., Begum, R., Shah, F.D., Patel, J.B., Shukla, S.N., et al.: Evaluation of serum and salivary total sialic acid and alpha-L-fucosidase in patients with oral precancerous condition and oral cancer. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 115, 764–771 (2013)

    Article  PubMed  Google Scholar 

  50. Giardina, M.G., Matarazzo, M., Morante, R., Lucariello, A., Varriale, A., Guardasole, V.: Serum alpha-L-fucosidase activity and early detection of hepatocellular carcinoma:a prospective study of patients with cirrhosis. Cancer. 83, 2468–2474 (1998)

    Article  CAS  PubMed  Google Scholar 

  51. Ayude, D., Paez De La Cadena, M., Martinez-Zorzano, V.S., Fernadez-Briera, A., Rodriguez-Berrocal, F.J.: Preoperative serum alpha-L-fucosidase activity as a prognostic marker in colorectal cancer. Oncology. 64, 36–45 (2003)

    Article  CAS  PubMed  Google Scholar 

  52. Wei, X., Wang, S., Rui, J.: The value of serum alpha-L-fucosidase activity in the diagnosis of primary liver cancer. Zhonghua Zhong Liu Za Zhi. 22, 148–150 (2000)

    CAS  PubMed  Google Scholar 

  53. Shetty, V., Hafner, J., Shah, P., Nickens, Z., Philip, R.: Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics. Clin. Proteomics. 9, 10 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kumar, S., Saxena, M., Srinivas, K., Singh, V.K.: Fucose: a biomarkers in grading of oral cancer. Natl. J. Maxillofac. Surg. 6, 176–179 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rai, N.P., Anekar, J., Shankara, S., Divakar, D.D., Al KAlheraif, A.A., Ramakrishnaih, R., et al.: Comparison of serum fucose levels in leukoplakia and oral cancer patients. Asian Pac. J. Cancer Prev. 16, 7497–7500 (2015)

    Article  PubMed  Google Scholar 

  56. Manjula, S., Monteiro, F., Rao Aroor, A., Rao, S., Annaswamy, R., Rao, A.: Assessment of serum L-fucose in brain tumor cases. Ann. Indian Acad. Neurol. 13, 33–36 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, L., Liu, Y., Wu, L., Sun, X.L.: Sialyltransferase inhibition and recent advances. Biochim. Biophys. Acta. 1864, 143–153 (2016)

    Article  CAS  PubMed  Google Scholar 

  58. Aoyagi, Y., Isemura, M., Yosizawa, Z., Suzuki, Y., Sekine, C., Onto, T., et al.: Fucosylation of serum alpha fetoprotein in patients with primary hepatocellular carcinoma. Biochim. Biophys. Acta. 830, 217–223 (1996)

    Article  Google Scholar 

  59. Noda, T., Miyoshi, E., Kitada, T., Nakahara, S., Gao, C.X., Honke, K., et al.: The enzymatic basis for the conversion of non-fucosylated to fucosylated alpha-fetoprotein by acyclic retinoid treatment in human hepatoma cells: activation of alpha 1,6 fucosyltransferase. Tumor Biol. 23, 202–211 (2002)

    Article  CAS  Google Scholar 

  60. Miyoshi, E., Uozumi, N., Sobajima, T., Takamatsu, S., Kamada, Y.: Roles of fucosyltransferases in cancer phenotypes. Book: Glycosignals in cancer: mechanisms of malignant phenotypes, pp. 3–16. Springer, Japan (2016)

    Book  Google Scholar 

  61. De Leoz, M.L., Young, L.J.T., An, H.J., Kronewitter, S.R., Kim, J., Miyamoto, S.: High mannose glycans are elevated during breast cancer progression. Mol. Cell. Proteomics. 10, M110–002717 (2011)

    Article  PubMed  Google Scholar 

  62. Hauselmann, I., Borsig, L.: Altered tumor cell glycosylation promotes metastasis. Front. Oncol. 4, 28 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hakomori, S.: Tumor associated carbohydrate antigens defining tumor malignancy: basis for development of anticancer vaccines. Adv. Exp. Med. Biol. 491, 369–402 (2001)

    Article  CAS  PubMed  Google Scholar 

  64. Shah, M.H., Sainger, R.N., Telang, S.D., Pancholi, G.H., Shukla, S.N., Patel, P.S.: E-cadherin truncation and sialyl Lewis-X overexpression in oral squamous cell carcinoma and oral precancerous conditions. Neoplasma. 56, 40–47 (2009)

    Article  CAS  PubMed  Google Scholar 

  65. Roy, R., Yang, J., Moses, M.A.: Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol. 27, 5287–5297 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gialeli, C., Theocharis, A.D., Karamanos, N.K.: Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278, 16–27 (2011)

    Article  CAS  PubMed  Google Scholar 

  67. You, T.K., Kim, K.M., Noh, S.J., Bae, J.S., Jang, K.Y., Chung, J.Y.: Expressions of E-cadherin, cortactin and MMP-9 in pseudoepitheliomatous hyperplasia and squamous cell carcinoma of the head and neck: their relationships with clinicopathologic factors and prognostic implication. Korean J. Pathol. 46, 331–340 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhou, J., Tao, D., Xu, Q., Gao, Z., Tang, D.: Expression of E-cadherin and vimentin in oral squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 8, 3150–3154 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sridevi, U., Jain, A., Nagalaxmi, V., Kumar, U.V., Goyal, S.: Expression of E-cadherin in normal oral mucosa, in oral precancerous lesions and in oral carcinomas. European J. Dent. 9, 364–372 (2015)

    Article  Google Scholar 

  70. Cavallaro, U., Christofori, G.: Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer. 4, 118–132 (2004)

    Article  CAS  PubMed  Google Scholar 

  71. Specenier, P., Brouwer, A.: Matrix metalloproteinases in head and neck cancer. World Journal of Surgical Medical and Radiation Oncology. 4, 18–27 (2015)

    Google Scholar 

  72. Zheng, W.Y., Zhang, D.T., Yang, S.Y., Li, H.: Elevated MMP-9 expression correlates with advanced stages of oral cancer and is linked to poor clinical outcomes. J. Oral Maxillofac. Surg. 73, 2334–2342 (2015)

    Article  PubMed  Google Scholar 

  73. Singh, R.D., Haridas, N., Patel, J.B., Shah, F.D., Shukla, S.N., Shah, P.M., et al.: Matrix metalloproteinases and their inhibitors: correlation with invasion and metastasis in oral cancer. Indian J. Clin. Biochem. 25, 250–259 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vajaria, B.N., Patel, K.R., Begum, R., Shah, F.D., Patel, J.B., Joshi, G.M.: Clinical significance of salivary matrix metalloproteinase-9 in oral precancerous conditions and oral cancer. Cancers Review. 1, 33–44 (2014)

    Article  Google Scholar 

  75. Shah, F.D., Shukla, S.N., Shukla, P.M., Shukla, H.N., Patel, P.S.: Clinical significance of matrix metalloproteinase 2 and 9 in breast cancer. Indian J. Cancer. 46, 194–202 (2009)

    Article  CAS  PubMed  Google Scholar 

  76. Bull, C., Stoel, B.A., den Brok, M.H., Adema, G.J.: Sialic acids sweeten’s a tumor’s life. Cancer Res. 74, 3199–3204 (2014)

    Article  PubMed  Google Scholar 

  77. Pidone Ribeiro, F.A., Noguti, J., Fujimaya Oshima, C.T., Araki Ribeiro, D.: Effective targeting of the epidermal growth factor receptor (EGFR) for treating oral cancer: a promising approach. Anticancer Res. 34, 1547–1552 (2014)

    Google Scholar 

  78. Wilding, J., Vousden, K.H., Soutter, W.P., McCrea, P.D., Del Buano, R., Pignatelli, M., et al.: E-cadherin transfection down-regulates the epidermal growth factor receptor and reverses the invasive phenotype of human papilloma virus-transfected keratinocytes. Cancer Res. 56, 5285–5292 (1996)

    CAS  PubMed  Google Scholar 

  79. Zeng, F., Harris, R.C.: Epidermal growth factor receptor from gene organization to bed side. Semin. Cell Dev. Biol. 28, 2–11 (2014)

    Article  CAS  PubMed  Google Scholar 

  80. Bremm, A., Walch, A., Fuchs, M., Mages, J., Duyster, J., Keller, G., et al.: Enhanced activation of epidermal growth factor receptor caused by tumor-derived E-cadherin mutations. Cancer Res. 68, 707–714 (2008)

    Article  CAS  PubMed  Google Scholar 

  81. Reddy, P., Liu, L., Ren, C., Lindgren, P., Boman, K., Shen, Y., et al.: Formation of E-cadherin-mediated cell-cell adhesion activates AKT and mitogen activated protein kinase via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor receptor in ovarian cancer cells. Mol. Endocrinol. 19, 2564–2578 (2005)

    Article  CAS  PubMed  Google Scholar 

  82. Gavard, J., Gutkind, J.S.: A molecular cross talk between E-cadherin and EGFR signaling networks. EGFR signaling networks in cancer therapy. In EGFR Signaling Networks in Cancer Therapy. Humana Press. 131–146 (2008)

  83. Lu, Z., Ghosh, S., Wang, Z., Hunter, T.: Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 4, 499–515 (2003)

    Article  CAS  PubMed  Google Scholar 

  84. Thiery, J.P.: Epithelial–mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740–746 (2003)

    Article  CAS  PubMed  Google Scholar 

  85. Andl, C.D., Rustgi, A.K.: No one-way street: cross-talk between E-cadherin and receptor tyrosine kinase (RTK) signaling: a mechanism to regulate RTK activity. Cancer Biol. Ther. 4, 35–38 (2005)

    Article  Google Scholar 

  86. Bae, G.Y., Choi, S.J., Lee, J.S., Jo, J., Lee, J., Kim, J., et al.: Loss of E-cadherin activates EGFR-MEK/ERK signaling, which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer. Oncotarget. 4, 2512–2522 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  87. Buonato, M., Lazzara, M.J.: ERK1/2 blockade prevents EMT in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res. 74, 309–319 (2014)

    Article  CAS  PubMed  Google Scholar 

  88. Sato, F., Shimada, Y., Watanabe, G., Uchida, S., Makino, T., Imamura, M.: Expression of vascular endothelial growth factor, matrix metalloproteinase-9 and E-cadherin in the process of lymph node metastasis in oesophageal cancer. Br. J. Cancer. 80, 1366–1372 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Theodoropoulos, G.E., Karafoka, E., Papailiou, J.G., Stamopoulos, P., Zambirinis, C.P., Bramis, K., et al.: P53 and EGFR expression in colorectal cancer: a reappraisal of 'old' tissue markers in patients with long follow-up. Anticancer Res. 29, 785–791 (2009)

    PubMed  Google Scholar 

  90. Okawa, T., Michaylira, C.Z., Kalabis, J., Stairs, D.B., Nakagawa, H., Andl, C., et al.: The functional interplay between EGFR overexpression, hTERT activation and p53 mutation in oesophageal epithelial cells with activation of stromal fibroblasts induces tumor development, invasion and differentiation. Genes Dev. 21, 2788–2803 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pais-Costa, S.R., Farah, J.F., Artigiani-Neto, R., Martins, S.J., Goldenberg, A.: Evaluation of P53, E-cadherin, cox-2, and EGFR protein immunoexpression on prognostic of resected gallbladder carcinoma. Arq. Bras. Cir. Dig. 27, 126–132 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ramaswamy, S., Duraisamy, S., Barbashov, S., Kawano, T., Kharbanda, S., Kufe, D.: The MUC1 and galectin-3 oncoproteins functions in micro RNA-dependent regulatory loop. Mol. Cell. 27, 992–1004 (2007)

    Article  Google Scholar 

  93. Pochampalli, M.R., el Bejjani, R.M., Schroeder, J.A.: MUC1 is a novel regulator of ErbB1 receptor trafficking. Oncogene. 26, 1693–1701 (2007)

    Article  CAS  PubMed  Google Scholar 

  94. Kufe, D.W.: Mucins in cancer: functions, prognosis and therapy. Nat. Rev. Cancer. 9, 874–885 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ahmad, R., Raina, D., Joshin, M.D., Kawano, T., Ren, J., Kharbanda, S., et al.: MUC1-C oncoprotein functions as a direct activator of the NF-κB p65 transcription factor. Cancer Res. 69, 7013–7021 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kufe, D.: Functional targeting of the MUC1 oncogene in human cancers. Cancer Biol. Therap. 8, 1197–1203 (2009)

    Article  CAS  Google Scholar 

  97. Vajaria, B.N., Patel, K.R., Begum, R., Patel, P.S.: Sialylation: an avenue to target cancer cells. Pathol. Oncol. Res. J. 22, 443–447 (2016)

    Article  CAS  Google Scholar 

  98. Brown, J.R., Crawford, B.E., Esko, J.D.: Glycan antagonists and inhibitors: a fount for drug discovery. Crit. Rev. Biochem. Mol. Biol. 42, 481–515 (2007)

    Article  CAS  PubMed  Google Scholar 

  99. Rillahan, C.D., Antonopoulos, A., Lefort, C.T., Sonon, R., Azadi, P., Ley, K., et al.: Global metabolic inhibitors of sialyl and fucosyltransferases remodel the glycome. Nat. Chem. Biol. 8, 661–668 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Okeley, N.M., Alley, S.C., Andersen, M.E., Boursalian, T.E., Burke, P.J., Emmerton, K.M., et al.: Development of orally active inhibitors of protein and cellular fucosylation. PNAS. 110, 5404–5409 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhudas S. Patel.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

None.

Disclosure

All authors have read and approved the manuscript.

The manuscript is not under consideration elsewhere for publication while being considered by the journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajaria, B.N., Patel, P.S. Glycosylation: a hallmark of cancer?. Glycoconj J 34, 147–156 (2017). https://doi.org/10.1007/s10719-016-9755-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9755-2

Keywords

Navigation