Skip to main content

Advertisement

Log in

The Adenosine-Dependent Angiogenic Switch of Macrophages to an M2-Like Phenotype is Independent of Interleukin-4 Receptor Alpha (IL-4Rα) Signaling

  • Published:
Inflammation Aims and scope Submit manuscript

ABSTRACT

Murine macrophages are activated by interferon-γ (IFN-γ) and/or Toll-like receptor (TLR) agonists such as bacterial endotoxin (lipopolysaccharide [LPS]) to express an inflammatory (M1) phenotype characterized by the expression of nitric oxide synthase-2 (iNOS) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-12. In contrast, Th2 cytokines IL-4 and IL-13 activate macrophages by inducing the expression of arginase-1 and the anti-inflammatory cytokine IL-10 in an IL-4 receptor-α (IL-4Rα)-dependent manner. Macrophages activated in this way are designated as “alternatively activated” (M2a) macrophages. We have shown previously that adenosine A2A receptor (A2AR) agonists act synergistically with TLR2, TLR4, TLR7, and TLR9 agonists to switch macrophages into an “M2-like” phenotype that we have termed “M2d.” Adenosine signaling suppresses the TLR-dependent expression of TNF-α, IL-12, IFN-γ, and several other inflammatory cytokines by macrophages and induces the expression of vascular endothelial growth factor (VEGF) and IL-10. We show here using mice lacking a functional IL-4Rα gene (IL-4Rα−/− mice) that this adenosine-mediated switch does not require IL-4Rα-dependent signaling. M2d macrophages express high levels of VEGF, IL-10, and iNOS, low levels of TNF-α and IL-12, and mildly elevated levels of arginase-1. In contrast, M2d macrophages do not express Ym1, Fizz1 (RELM-α), or CD206 at levels greater than those induced by LPS, and dectin-1 expression is suppressed. The use of these markers in vivo to identify “M2” macrophages thus provides an incomplete picture of macrophage functional status and should be viewed with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.

    Article  PubMed  CAS  Google Scholar 

  2. Leibovich, S.J., and R. Ross. 1975. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. American Journal of Pathology 78: 71–100.

    PubMed  CAS  Google Scholar 

  3. Lucas, T., et al. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184: 3964–3977.

    Article  CAS  Google Scholar 

  4. Galli, S.J., et al. 2011. Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nature Immunology 12: 1035–1044.

    Article  PubMed  CAS  Google Scholar 

  5. Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology 8: 958–969.

    Article  PubMed  CAS  Google Scholar 

  6. Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nature Reviews Immunology 11: 750–761.

    Article  PubMed  CAS  Google Scholar 

  7. Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5: 953–964.

    Article  PubMed  CAS  Google Scholar 

  8. Mosser, D.M. 2003. The many faces of macrophage activation. Journal of Leukocyte Biology 73: 209–212.

    Article  PubMed  CAS  Google Scholar 

  9. Stein, M., et al. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine 176: 287–292.

    Article  PubMed  CAS  Google Scholar 

  10. Willment, J.A., et al. 2003. Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. Journal of Immunology 171: 4569–4573.

    CAS  Google Scholar 

  11. Kreider, T., et al. 2007. Alternatively activated macrophages in helminth infections. Current Opinion in Immunology 19: 448–453.

    Article  PubMed  CAS  Google Scholar 

  12. Martinez, F.O., et al. 2008. Macrophage activation and polarization. Frontiers in Bioscience 13: 453–461.

    Article  PubMed  CAS  Google Scholar 

  13. Pinhal-Enfield, G., et al. 2003. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. American Journal of Pathology 163: 711–721.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrante, C.J., and S.J. Leibovich. 2012. Regulation of macrophage polarization and wound healing. Advances in Wound Care 1: 10–16.

    Article  Google Scholar 

  15. Csoka, B., et al. 2012. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. The FASEB Journal 26: 376–386.

    Article  CAS  Google Scholar 

  16. Murphree, L.J., et al. 2005. Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: Role of NF-kappaB in A(2A) adenosine receptor induction. Biochemical Journal 391: 575–580.

    Article  PubMed  CAS  Google Scholar 

  17. Ramanathan, M., et al. 2009. Differential regulation of HIF-1alpha isoforms in murine macrophages by TLR4 and adenosine A(2A) receptor agonists. Journal of Leukocyte Biology 86: 681–689.

    Article  PubMed  CAS  Google Scholar 

  18. Ramanathan, M., et al. 2007. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Molecular Biology of the Cell 18: 14–23.

    Article  PubMed  CAS  Google Scholar 

  19. Elson, G., et al. 2013. Induction of murine adenosine A(2A) receptor expression by LPS: Analysis of the 5′ upstream promoter. Genes Immunology. doi:10.1038/gene.2012.60.

  20. Komohara, Y., et al. 2011. M2 macrophage/microglial cells induce activation of Stat3 in primary central nervous system lymphoma. Journal of Clinical and Experimental Hematopathology 51: 93–99.

    Article  PubMed  Google Scholar 

  21. Kurahara, H., et al. 2012. M2-polarized tumor-associated macrophage infiltration of regional lymph nodes is associated with nodal lymphangiogenesis and occult nodal involvement in pN0 pancreatic cancer. Pancreas 42: 155–159.

    Article  Google Scholar 

  22. Niino, D., et al. 2010. Ratio of M2 macrophage expression is closely associated with poor prognosis for angioimmunoblastic T-cell lymphoma (AITL). Pathology International 60: 278–283.

    Article  PubMed  Google Scholar 

  23. Prokop, S., et al. 2011. M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. American Journal of Pathology 178: 1279–1286.

    Article  PubMed  Google Scholar 

  24. Ruffell, D., et al. 2009. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America 106: 17475–17480.

    Article  PubMed  CAS  Google Scholar 

  25. Hasko, G., et al. 2008. Adenosine receptors: Therapeutic aspects for inflammatory and immune diseases. Nature Reviews. Drug Discovery 7: 759–770.

    Article  PubMed  CAS  Google Scholar 

  26. Linden, J. 2001. Molecular approach to adenosine receptors: Receptor-mediated mechanisms of tissue protection. Annual Review of Pharmacology and Toxicology 41: 775–787.

    Article  PubMed  CAS  Google Scholar 

  27. Greenhalgh, D.G. 1998. The role of apoptosis in wound healing. The International Journal of Biochemistry & Cell Biology 30: 1019–1030.

    Article  CAS  Google Scholar 

  28. Rai, N.K., et al. 2005. Apoptosis: A basic physiologic process in wound healing. The International Journal of Lower Extremity Wounds 4: 138–144.

    Article  PubMed  Google Scholar 

  29. Mylonas, K.J., et al. 2012. Alternative activation of macrophages by filarial nematodes is MyD88-independent. Immunobiology. doi:10.1016/j.imbio.2012.07.006.

  30. Csoka, B., et al. 2007. A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110: 2685–2695.

    Article  PubMed  CAS  Google Scholar 

  31. Nemeth, Z.H., et al. 2005. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. Journal of Immunology 175: 8260–8270.

    CAS  Google Scholar 

  32. Macedo, L., et al. 2007. Wound healing is impaired in MyD88-deficient mice: A role for MyD88 in the regulation of wound healing by adenosine A2A receptors. American Journal of Pathology 171: 1774–1788.

    Article  PubMed  CAS  Google Scholar 

  33. Grinberg, S., et al. 2009. Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. American Journal of Pathology 175: 2439–2453.

    Article  PubMed  CAS  Google Scholar 

  34. Arnold, L., et al. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. The Journal of Experimental Medicine 204: 1057–1069.

    Article  PubMed  CAS  Google Scholar 

  35. Ricardo, S.D., et al. 2008. Macrophage diversity in renal injury and repair. The Journal of Clinical Investigation 118: 3522–3530.

    Article  PubMed  CAS  Google Scholar 

  36. Wynn, T.A., and L. Barron. 2010. Macrophages: Master regulators of inflammation and fibrosis. Seminars in Liver Disease 30: 245–257.

    Article  PubMed  CAS  Google Scholar 

  37. Willenborg, S., et al. 2012. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120: 613–625.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang, X., and D.M. Mosser. 2008. Macrophage activation by endogenous danger signals. The Journal of Pathology 214: 161–178.

    Article  PubMed  CAS  Google Scholar 

  39. Brancato, S.K., and J.E. Albina. 2011. Wound macrophages as key regulators of repair: Origin, phenotype, and function. American Journal of Pathology 178: 19–25.

    Article  PubMed  CAS  Google Scholar 

  40. Daley, J.M., et al. 2010. The phenotype of murine wound macrophages. Journal of Leukocyte Biology 87: 59–67.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by grants from the US Public Health Service (RO1-GM068636 to SJL and RO1-GM066189 to GH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Joseph Leibovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrante, C.J., Pinhal-Enfield, G., Elson, G. et al. The Adenosine-Dependent Angiogenic Switch of Macrophages to an M2-Like Phenotype is Independent of Interleukin-4 Receptor Alpha (IL-4Rα) Signaling. Inflammation 36, 921–931 (2013). https://doi.org/10.1007/s10753-013-9621-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9621-3

KEY WORDS

Navigation