Skip to main content
Log in

PTX3 Is Located at the Membrane of Late Apoptotic Macrophages and Mediates the Phagocytosis of Macrophages

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Apoptotic macrophages are removed by neighboring phagocytes (efferocytosis), which is an important event in advanced atherosclerosis. Recent reports have elucidated some key molecular regulators in efferocytosis including complement C1q, MFGE8, and MERTK. However, it remains unknown whether the long pentraxin 3 (PTX3), which is an important molecule that is involved in apoptotic cell clearance in the immune response, plays a part in efferocytosis during advanced atherosclerosis. In this study, we modeled macrophage apoptosis in advanced plaques by incubating macrophages (peritoneal macrophages isolated from C57 mice) with free cholesterol (free cholesterol-induced apoptotic macrophages, FC-AMs). FC-AMs were added to a monolayer of fresh phagocytes to study the engulfment response. We observed that PTX3 was mainly located at the membrane of late apoptotic macrophages. The anti-PTX3 monoclonal Ab 16B5 inhibited the engulfment of late apoptotic macrophages by phagocytes in a dose-dependent manner (from 14.63% inhibition at 5 μg/ml to 26.19% inhibition at 50 μg/ml). These results suggest that PTX3 located at the membrane of late apoptotic macrophages mediates their phagocytosis by phagocytes in a cell model of advanced atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MFGE8:

Milk fat globulin E8

MERTK:

MER tyrosine kinase

FC-AMs:

Free cholesterol-induced apoptotic macrophages

PTX3:

Pentraxin 3

CRP:

C-reactive protein

SAP:

Serum amyloid-P

DCs:

Dendritic cells

CVD:

Cardiovascular disease

GAS6:

Growth arrest-specific protein 6

DMEM:

Dulbecco’s modified Eagle’s medium

ACAT:

Acyl-CoA:cholesterol O-acyltransferase

NECDS:

Non-enzymatic cell dissociation solution

PBS:

Phosphate-buffered saline

UV-AMs:

Ultraviolet-induced apoptotic macrophages

FACS:

Fluorescence-activated cell sorter

References

  1. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.

    Article  PubMed  CAS  Google Scholar 

  2. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10:36–46.

    Article  PubMed  CAS  Google Scholar 

  3. Kravitz MS, Pitashny M, Shoenfeld Y. Protective molecules—C-reactive protein (CRP), serum amyloid P (SAP), pentraxin3 (PTX3), mannose-binding lectin (MBL), and apolipoprotein A1 (Apo A1), and their autoantibodies: prevalence and clinical significance in autoimmunity. J Clin Immunol. 2005;25:582–91.

    Article  PubMed  CAS  Google Scholar 

  4. Rovere P, Peri G, Fazzini F, Bottazzi B, Doni A, Bondanza A, Zimmermann VS, Garlanda C, Fascio U, Sabbadini MG, Rugarli C, Mantovani A, Manfredi AA. The long pentraxin PTX3 binds to apoptotic cells and regulates their clearance by antigen-presenting dendritic cells. Blood. 2000;96:4300–6.

    PubMed  CAS  Google Scholar 

  5. van Rossum AP, Fazzini F, Limburg PC, Manfredi AA, Rovere-Querini P, Mantovani A, Kallenberg CG. The prototypic tissue pentraxin PTX3, in contrast to the short pentraxin serum amyloid P, inhibits phagocytosis of late apoptotic neutrophils by macrophages. Arthritis Rheum. 2004;50:2667–74.

    Article  PubMed  Google Scholar 

  6. Jaillon S, Jeannin P, Hamon Y, Fremaux I, Doni A, Bottazzi B, Blanchard S, Subra JF, Chevailler A, Mantovani A, Delneste Y. Endogenous PTX3 translocates at the membrane of late apoptotic human neutrophils and is involved in their engulfment by macrophages. Cell Death Differ. 2009;16:465–74.

    Article  PubMed  CAS  Google Scholar 

  7. Nebuloni M, Pasqualini F, Zerbi P, Lauri E, Mantovani A, Vago L, Garlanda C. PTX3 expression in the heart tissues of patients with myocardial infarction and infectious myocarditis. Cardiovasc Pathol. 2011;20:e27–35.

    Article  PubMed  CAS  Google Scholar 

  8. Peri G, Introna M, Corradi D, Iacuitti G, Signorini S, Avanzini F, Pizzetti F, Maggioni AP, Moccetti T, Metra M, Cas LD, Ghezzi P, Sipe JD, Re G, Olivetti G, Mantovani A, Latini R. PTX3, A prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans. Circulation. 2000;102:636–41.

    PubMed  CAS  Google Scholar 

  9. Rolph MS, Zimmer S, Bottazzi B, Garlanda C, Mantovani A, Hansson GK. Production of the long pentraxin PTX3 in advanced atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2002;22:e10–14.

    Article  PubMed  Google Scholar 

  10. Souza DG, Soares AC, Pinho V, Torloni H, Reis LF, Teixeira MM, Dias AA. Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am J Pathol. 2002;160:1755–65.

    Article  PubMed  CAS  Google Scholar 

  11. Salio M, Chimenti S, De Angelis N, Molla F, Maina V, Nebuloni M, Pasqualini F, Latini R, Garlanda C, Mantovani A. Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation. 2008;117:1055–64.

    Article  PubMed  CAS  Google Scholar 

  12. Brugger-Andersen T, Ponitz V, Kontny F, Staines H, Grundt H, Sagara M, Nilsen DW. The long pentraxin 3 (PTX3): a novel prognostic inflammatory marker for mortality in acute chest pain. Thromb Haemost. 2009;102:555–63.

    PubMed  CAS  Google Scholar 

  13. Kume N, Mitsuoka H, Hayashida K & Tanaka M: Pentraxin 3 as a biomarker for acute coronary syndrome: comparison with biomarkers for cardiac damage. J Cardiol. 2011

  14. Maekawa Y, Nagai T & Anzai A: Pentraxins: CRP and PTX3 and cardiovascular disease. Inflamm Allergy Drug Targets. 2011

  15. Matsubara J, Sugiyama S, Nozaki T, Sugamura K, Konishi M, Ohba K, Matsuzawa Y, Akiyama E, Yamamoto E, Sakamoto K, Nagayoshi Y, Kaikita K, Sumida H, Kim-Mitsuyama S, Ogawa H. Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction. J Am Coll Cardiol. 2011;57:861–9.

    Article  PubMed  CAS  Google Scholar 

  16. Jenny NS, Arnold AM, Kuller LH, Tracy RP. & Psaty BM:Associations of pentraxin 3 with cardiovascular disease and all-cause death: the Cardiovascular Health Study. Arterioscler Thromb Vasc Biol. 2009;29:594–9.

    Article  PubMed  CAS  Google Scholar 

  17. Lee DH, Jeon HK, You JH, Park MY, Lee SJ, Kim SS, Shim BJ, Choi YS, Shin WS, Lee JM, Park CS, Youn HJ, Chung WS, Kim JH. Pentraxin 3 as a novel marker predicting congestive heart failure in subjects with acute coronary syndrome. Korean Circ J. 2010;40:370–6.

    Article  PubMed  CAS  Google Scholar 

  18. Matsui S, Ishii J, Kitagawa F, Kuno A, Hattori K, Ishikawa M, Okumura M, Kan S, Nakano T, Naruse H, Tanaka I, Nomura M, Hishida H, Ozaki Y. Pentraxin 3 in unstable angina and non-ST-segment elevation myocardial infarction. Atherosclerosis. 2010;210:220–5.

    Article  PubMed  CAS  Google Scholar 

  19. Atzeni F, Turiel M, Hollan I, Meroni P, Sitia S, Tomasoni L, Sarzi-Puttini P. Usefulness of cardiovascular biomarkers and cardiac imaging in systemic rheumatic diseases. Autoimmun Rev. 2010;9:845–8.

    Article  PubMed  CAS  Google Scholar 

  20. Thorp EB. Mechanisms of failed apoptotic cell clearance by phagocyte subsets in cardiovascular disease. Apoptosis. 2010;15:1124–36.

    Article  PubMed  CAS  Google Scholar 

  21. Yano Y, Matsuda S, Hatakeyama K, Sato Y, Imamura T, Shimada K, Kodama T, Kario K, Asada Y. Plasma pentraxin 3, but not high-sensitivity C-reactive protein, is a useful inflammatory biomarker for predicting cognitive impairment in elderly hypertensive patients. J Gerontol A Biol Sci Med Sci. 2010;65:547–52.

    Article  PubMed  Google Scholar 

  22. Li Y, Ge M, Ciani L, Kuriakose G, Westover EJ, Dura M, Covey DF, Freed JH, Maxfield FR, Lytton J, Tabas I. Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J Biol Chem. 2004;279:37030–9.

    Article  PubMed  CAS  Google Scholar 

  23. Li Y, Gerbod-Giannone MC, Seitz H, Cui D, Thorp E, Tall AR, Matsushima GK, Tabas I. Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the Mer receptor. J Biol Chem. 2006;281:6707–17.

    Article  PubMed  CAS  Google Scholar 

  24. Gaipl US, Kuenkele S, Voll RE, Beyer TD, Kolowos W, Heyder P, Kalden JR, Herrmann M. Complement binding is an early feature of necrotic and a rather late event during apoptotic cell death. Cell Death Differ. 2001;8:327–34.

    Article  PubMed  CAS  Google Scholar 

  25. Chen T, Xu Y, Guo H, Liu Y, Hu P, Yang X, Li X, Ge S, Velu SE, Nadkarni DH, Wang W, Zhang R, Wang H. Experimental therapy of ovarian cancer with synthetic makaluvamine analog: in vitro and in vivo anticancer activity and molecular mechanisms of action. PLoS One. 2011;6:e20729.

    Article  PubMed  CAS  Google Scholar 

  26. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148:2207–16.

    PubMed  CAS  Google Scholar 

  27. Steinberg D, Lewis A. Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation. 1997;95:1062–71.

    PubMed  CAS  Google Scholar 

  28. Kinscherf R, Claus R, Wagner M, Gehrke C, Kamencic H, Hou D, Nauen O, Schmiedt W, Kovacs G, Pill J, Metz J, Deigner HP. Apoptosis caused by oxidized LDL is manganese superoxide dismutase and p53 dependent. FASEB J. 1998;12:461–7.

    PubMed  CAS  Google Scholar 

  29. Tabas I. Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ. 2004;11(1):S12–16.

    Article  PubMed  CAS  Google Scholar 

  30. Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest. 2002;110:905–11.

    PubMed  CAS  Google Scholar 

  31. Yao PM, Tabas I. Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J Biol Chem. 2000;275:23807–13.

    Article  PubMed  CAS  Google Scholar 

  32. Alles VV, Bottazzi B, Peri G, Golay J, Introna M, Mantovani A. Inducible levelsion of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes. Blood. 1994;84:3483–93.

    PubMed  CAS  Google Scholar 

  33. Majai G, Sarang Z, Csomos K, Zahuczky G, Fesus L. PPARgamma-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur J Immunol. 2007;37:1343–54.

    Article  PubMed  CAS  Google Scholar 

  34. Klouche M, Peri G, Knabbe C, Eckstein HH, Schmid FX, Schmitz G, Mantovani A. Modified atherogenic lipoproteins induce levelsion of pentraxin-3 by human vascular smooth muscle cells. Atherosclerosis. 2004;175:221–8.

    Article  PubMed  CAS  Google Scholar 

  35. Jaillon S, Peri G, Delneste Y, Fremaux I, Doni A, Moalli F, Garlanda C, Romani L, Gascan H, Bellocchio S, Bozza S, Cassatella MA, Jeannin P, Mantovani A. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J Exp Med. 2007;204:793–804.

    Article  PubMed  CAS  Google Scholar 

  36. Nauta AJ, Bottazzi B, Mantovani A, Salvatori G, Kishore U, Schwaeble WJ, Gingras AR, Tzima S, Vivanco F, Egido J, Tijsma O, Hack EC, Daha MR, Roos A. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol. 2003;33:465–73.

    Article  PubMed  CAS  Google Scholar 

  37. Baruah P, Dumitriu IE, Peri G, Russo V, Mantovani A, Manfredi AA, Rovere-Querini P. The tissue pentraxin PTX3 limits C1q-mediated complement activation and phagocytosis of apoptotic cells by dendritic cells. J Leukoc Biol. 2006;80:87–95.

    Article  PubMed  CAS  Google Scholar 

  38. Baruah P, Propato A, Dumitriu IE, Rovere-Querini P, Russo V, Fontana R, Accapezzato D, Peri G, Mantovani A, Barnaba V, Manfredi AA. The pattern recognition receptor PTX3 is recruited at the synapse between dying and dendritic cells, and edits the cross-presentation of self, viral, and tumor antigens. Blood. 2006;107:151–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of P. R. China (No. 30471921). We thank our teacher, Jianfang Zhu, from the Laboratory of Human Genome Research at Union Hospital for providing the experimental platform. We sincerely acknowledge Professor Ira Tabas for his advice concerning the experiment methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Cheng.

Additional information

Tangmeng Guo and Li Ke contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, T., Ke, L., Qi, B. et al. PTX3 Is Located at the Membrane of Late Apoptotic Macrophages and Mediates the Phagocytosis of Macrophages. J Clin Immunol 32, 330–339 (2012). https://doi.org/10.1007/s10875-011-9615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9615-6

Keywords

Navigation