Skip to main content

Advertisement

Log in

Effect of recombinant Mce4A protein of Mycobacterium bovis on expression of TNF-α, iNOS, IL-6, and IL-12 in bovine alveolar macrophages

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The pathogenesis of tuberculosis-causing Mycobacterium bovis is largely due to its ability to enter and survive in alveolar macrophages. Its mechanism of entry, mediated by proteins encoded by mammalian cell entry (mce) genes, is important for its pathogenesis. Here we focussed on the role of the Mce4A protein in the pathogenesis of M. bovis in cattle. Cell livability decreased in a dosage-dependent manner when Mce4A proteins were used to stimulate alveolar macrophages, which suggested that the recombinant Mce4A protein significantly inhibited alveolar macrophage activity. To test whether Mce4A modulates the gene expression profile of alveolar macrophages, alveolar macrophages were stimulated by Mce4A protein and other proteins/ligands (such as MtbPPD, MbPPD, and BCG), followed by real-time RT-PCR assay for the mRNA expression level of TNF-α, iNOS, IL-6, and IL-12. The results showed that the expression of TNF-α, iNOS, and IL-6 in alveolar macrophages was up-regulated by stimulation with the recombinant Mce4A protein of M. bovis; in contrast, expression of IL-12 was unaffected. MbPPD and BCG up-regulated the mRNA expression of TNF-α, iNOS, IL-6, and IL-12 (P < 0.05), whereas MtbPPD stimulated the mRNA expression of TNF-α, IL-6, and IL-12 with no effect on iNOS. This study suggests that Mce4A proteins may induce the body’s inflammation response to M. bovis and therefore may play an important role in the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Raviglione MC (2003) The TB epidemic from 1992 to 2002. Tuberculosis (Edinb) 83:4–14

    Article  Google Scholar 

  2. Kidane D, Olobo JO, Habte A, Negesse Y, Aseffa A, Abate G, Yassin MA, Bereda K, Harboe M (2002) Identification of the causative organism of tuberculous lymphadenitis in ethiopia by PCR. J Clin Microbiol 40:4230–4234

    Article  PubMed  CAS  Google Scholar 

  3. Grange JM (2001) Mycobacterium bovis infection in human beings. Tuberculosis (Edinb) 81:71–77

    Article  CAS  Google Scholar 

  4. Liu SG, Wang CL, Zhang XH, Guo SP, Guo Y, Shao ML (2005) Epidemiology and ecology of bovine tuberculosis. China Anim Husb Vet Med 32:60–62

    Google Scholar 

  5. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  PubMed  CAS  Google Scholar 

  6. Tiruviluamala PRL (2002) Tuberculosis. Annu Rev Public Health 2002 23:403–426

    Article  Google Scholar 

  7. Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:1454–1457

    Article  PubMed  CAS  Google Scholar 

  8. Flesselles B, Anand NN, Remani J, Loosmore SM, Klein MH (1999) Disruption of the mycobacterial cell entry gene of Mycobacterium bovis BCG results in a mutant that exhibits a reduced invasiveness for epithelial cells. FEMS Microbiol Lett 177:237–242

    Article  PubMed  CAS  Google Scholar 

  9. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  10. Gioffre A, Infante E, Aguilar D, De la Paz Santangelo M, Klepp L, Amadio A, Meikle V, Etchechoury I, Romano MI, Cataldi A, Hernandez RP, Bigi F (2005) Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect 7:325–334

    Article  PubMed  CAS  Google Scholar 

  11. Graham JE, Clark-Curtiss JE (1999) Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96:11554–11559

    Article  PubMed  CAS  Google Scholar 

  12. Kumar A, Chandolia A, Chaudhry U, Brahmachari V, Bose M (2005) Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling. FEMS Immunol Med Microbiol 43:185–195

    Article  PubMed  CAS  Google Scholar 

  13. Kumar A, Bose M, Brahmachari V (2003) Analysis of expression profile of mammalian cell entry (mce) operons of Mycobacterium tuberculosis. Infect Immun 71:6083–6087

    Article  PubMed  CAS  Google Scholar 

  14. Harboe M, Christensen A, Haile Y, Ulvund G, Ahmad S, Mustafa AS, Wiker HG (1999) Demonstration of expression of six proteins of the mammalian cell entry (mce1) operon of Mycobacterium tuberculosis by anti-peptide antibodies, enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. Scand J Immunol 50:519–527

    Article  PubMed  CAS  Google Scholar 

  15. Ahmad S, El-Shazly S, Mustafa AS, Al-Attiyah R (2004) Mammalian cell-entry proteins encoded by the mce3 operon of Mycobacterium tuberculosis are expressed during natural infection in humans. Scand J Immunol 60:382–391

    Article  PubMed  CAS  Google Scholar 

  16. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689

    Article  PubMed  CAS  Google Scholar 

  17. Zumarraga M, Bigi F, Alito A, Romano MI, Cataldi A (1999) A 12.7 kb fragment of the Mycobacterium tuberculosis genome is not present in Mycobacterium bovis. Microbiology 145(Pt 4): 893–897

    Article  PubMed  CAS  Google Scholar 

  18. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31:406–409

    PubMed  Google Scholar 

  19. Ning ZY, Zhao DM, Liu HX, Yang JM, Han CX, Cui YL, Meng LP, Wu CD, Liu ML, Zhang TX (2005) Altered expression of the prion gene in rat astrocyte and neuron cultures treated with prion Peptide 106–126. Cell Mol Neurobiol 25:1171–1183

    Article  PubMed  CAS  Google Scholar 

  20. Chen M, Gan H, Remold HG (2006) A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176:3707–3716

    PubMed  CAS  Google Scholar 

  21. Keane J, Remold HG, Kornfeld H (2000) Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 164:2016–2020

    PubMed  CAS  Google Scholar 

  22. Sedgwick JD, Riminton DS, Cyster JG, Korner H (2000) Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today 21:110–113

    Article  PubMed  CAS  Google Scholar 

  23. Roach DR, Briscoe H, Baumgart K, Rathjen DA, Britton WJ (1999) Tumor necrosis factor (TNF) and a TNF-mimetic peptide modulate the granulomatous response to Mycobacterium bovis BCG infection in vivo. Infect Immun 67:5473–5476

    PubMed  CAS  Google Scholar 

  24. McDermott MF (2001) TNF and TNFR biology in health and disease. Cell Mol Biol (Noisy-le-grand) 47:619–635

    CAS  Google Scholar 

  25. Kaneko H, Yamada H, Mizuno S, Udagawa T, Kazumi Y, Sekikawa K, Sugawara I (1999) Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab Invest 79:379–386

    PubMed  CAS  Google Scholar 

  26. Shimono N, Morici L, Casali N, Cantrell S, Sidders B, Ehrt S, Riley LW (2003) Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc Natl Acad Sci U S A 100:15918–15923

    Article  PubMed  CAS  Google Scholar 

  27. Xue LJ, Cao MM, Luan J, Ren H, Pan X, Cao J, Qi ZT (2007) Mammalian cell entry protein of Mycobacterium tuberculosis induces the proinflammatory response in RAW 264.7 murine macrophage-like cells. Tuberculosis (Edinb) 87(3):185–192

    Article  CAS  Google Scholar 

  28. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  29. Sherman MP, Ganz T (1992) Host defense in pulmonary alveoli. Annu Rev Physiol 54:331–350

    Article  PubMed  CAS  Google Scholar 

  30. Liew FY, Cox FE (1991) Nonspecific defence mechanism: the role of nitric oxide. Immunol Today 12:A17–A21

    Article  PubMed  CAS  Google Scholar 

  31. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. Faseb J 6:3051–3054

    PubMed  CAS  Google Scholar 

  32. Nathan CF, Hibbs JB Jr. (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–70

    Article  PubMed  CAS  Google Scholar 

  33. Van Snick J, Vink A, Cayphas S, Uyttenhove C (1987) Interleukin-HP1, a T cell-derived hybridoma growth factor that supports the in vitro growth of murine plasmacytomas. J Exp Med 165:641–649

    Article  PubMed  Google Scholar 

  34. Hirano T, Taga T, Nakano N, Yasukawa K, Kashiwamura S, Shimizu K, Nakajima K, Pyun KH, Kishimoto T (1985) Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci U S A 82:5490–5494

    Article  PubMed  CAS  Google Scholar 

  35. Corbel C, Melchers F (1984) The synergism of accessory cells and of soluble alpha-factors derived from them in the activation of B cells to proliferation. Immunol Rev 78:51–74

    Article  PubMed  CAS  Google Scholar 

  36. Weissenbach J, Chernajovsky Y, Zeevi M, Shulman L, Soreq H, Nir U, Wallach D, Perricaudet M, Tiollais P, Revel M (1980) Two interferon mRNAs in human fibroblasts: in vitro translation and Escherichia coli cloning studies. Proc Natl Acad Sci U S A 77:7152–7156

    Article  PubMed  CAS  Google Scholar 

  37. Leal IS, Smedegard B, Andersen P, Appelberg R (1999) Interleukin-6 and interleukin-12 participate in induction of a type 1 protective T-cell response during vaccination with a tuberculosis subunit vaccine. Infect Immun 67:5747–5754

    PubMed  CAS  Google Scholar 

  38. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4 + CD25 + T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    Article  PubMed  CAS  Google Scholar 

  39. Aldwell FE, Wedlock DN, Buddle BM (1996) Bacterial metabolism, cytokine mRNA transcription and viability of bovine alveolar macrophages infected with Mycobacterium bovis BCG or virulent M. bovis. Immunol Cell Biol 74:45–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mao at China Institute of Veterinary Drug Control and Dr. Wan at Chinese center for disease control and prevention for support PPD and M. bovis. This work was supported by the 973 Project [No. 2005CB523000), and Natural Science Foundation of China (Project No. 30500371, Project No. 30571399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deming Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material

ESM 1 (PDF 31 KB)

ESM 2 (PDF 41 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Li, Y., Yang, J. et al. Effect of recombinant Mce4A protein of Mycobacterium bovis on expression of TNF-α, iNOS, IL-6, and IL-12 in bovine alveolar macrophages. Mol Cell Biochem 302, 1–7 (2007). https://doi.org/10.1007/s11010-006-9395-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9395-0

Keywords

Navigation