Skip to main content

Advertisement

Log in

Cell Type-Specific Targeting with Surface-Engineered Lentiviral Vectors Co-displaying OKT3 Antibody and Fusogenic Molecule

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the potential of a T-cell-related targeting method using a lentiviral vector-based gene delivery system.

Materials and Methods

A lentiviral vector system was constructed by co-incorporating an anti-CD3 antibody (OKT3) and a fusogen into individual viral particles. The incorporation of OKT3 and fusogen was analyzed using confocal microscopy and the in vitro transduction efficiency was evaluated using flow cytometry. Blocking reagents (ammonium chloride (NH4Cl) and soluble OKT3 antibody) were added into vector supernatants during transduction to study the mechanism of this two-molecule targeting strategy. To demonstrate the ability of targeted transduction in vivo, Jurkat.CD3 cells were xenografted subcutaneously into the right flank of each mouse and the lentiviral vector was injected subcutaneously on both sides of each mouse 8 h post-injection. Subsequently, the reporter gene (firefly luciferase) expression was monitored using a noninvasive bioluminescence imaging system.

Results

By co-displaying OKT3 and fusogen on the single lentiviral surface, we could achieve targeted delivery of genes to CD3-positive T-cells both in vitro and in vivo.

Conclusions

These results suggest the potential utility of this engineered lentiviral system as a new tool for cell type-directed gene delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Chernajovsky, G. Adams, K. Triantaphyllopoulos, M. F. Ledda, and O. L. Podhajcer. Pathogenic lymphoid cells engineered to express TGF beta 1 ameliorate disease in a collagen-induced arthritis model. Gene. Ther. 4:553–559 (1997) doi:10.1038/sj.gt.3300436.

    Article  PubMed  CAS  Google Scholar 

  2. A. Aiuti, S. Vai, A. Mortellaro, G. Casorati, F. Ficara, G. Andolfi, G. Ferrari, A. Tabucchi, F. Carlucci, H. D. Ochs, L. D. Notarangelo, M. G. Roncarolo, and C. Bordignon. Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat. Med. 8:423–425 (2002) doi:10.1038/nm0502-423.

    Article  PubMed  CAS  Google Scholar 

  3. E. Verhoeyen, V. Dardalhon, O. Ducrey-Rundquist, D. Trono, N. Taylor, and F. L. Cosset. IL-7 surface-engineered lentiviral vectors promote survival and efficient gene transfer in resting primary T lymphocytes. Blood. 101:2167–2174 (2003) doi:10.1182/blood-2002-07-2224.

    Article  PubMed  CAS  Google Scholar 

  4. W. R. Drobyski, H. C. Morse 3rd, W. H. Burns, J. T. Casper, and G. Sandford. Protection from lethal murine graft-versus-host disease without compromise of alloengraftment using transgenic donor T cells expressing a thymidine kinase suicide gene. Blood. 97:2506–2513 (2001) doi:10.1182/blood.V97.8.2506.

    Article  PubMed  CAS  Google Scholar 

  5. M. Maurice, E. Verhoeyen, P. Salmon, D. Trono, S. J. Russell, and F. L. Cosset. Efficient gene transfer into human primary blood lymphocytes by surface-engineered lentiviral vectors that display a T cell-activating polypeptide. Blood. 99:2342–2350 (2002) doi:10.1182/blood.V99.7.2342.

    Article  PubMed  CAS  Google Scholar 

  6. R. A. Morgan, M. E. Dudley, J. R. Wunderlich, M. S. Hughes, J. C. Yang, R. M. Sherry, R. E. Royal, S. L. Topalian, U. S. Kammula, N. P. Restifo, Z. Zheng, A. Nahvi, C. R. de Vries, L. J. Rogers-Freezer, S. A. Mavroukakis, and S. A. Rosenberg. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 314:126–129 (2006) doi:10.1126/science.1129003.

    Article  PubMed  CAS  Google Scholar 

  7. B. L. Levine, L. M. Humeau, J. Boyer, R. R. MacGregor, T. Rebello, X. Lu, G. K. Binder, V. Slepushkin, F. Lemiale, J. R. Mascola, F. D. Bushman, B. Dropulic, and C. H. June. Gene transfer in humans using a conditionally replicating lentiviral vector. Proc. Natl. Acad. Sci. U.S.A. 103:17372–17377 (2006) doi:10.1073/pnas.0608138103.

    Article  PubMed  CAS  Google Scholar 

  8. M. Sadelain, I. Riviere, and R. Brentjens. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer. 3:35–45 (2003) doi:10.1038/nrc971.

    Article  PubMed  CAS  Google Scholar 

  9. M. T. Stephan, V. Ponomarev, R. J. Brentjens, A. H. Chang, K. V. Dobrenkov, G. Heller, and M. Sadelain. T cell-encoded CD80 and 4–1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med. 13:1440–1449 (2007) doi:10.1038/nm1676.

    Article  PubMed  CAS  Google Scholar 

  10. T. N. Schumacher. T-cell-receptor gene therapy. Nat. Rev. Immunol. 2:512–519 (2002) doi:10.1038/nri841.

    Article  PubMed  CAS  Google Scholar 

  11. O. J. Muller, F. Kaul, M. D. Weitzman, R. Pasqualini, W. Arap, J. A. Kleinschmidt, and M. Trepel. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat. Biotechnol. 21:1040–1046 (2003) doi:10.1038/nbt856.

    Article  PubMed  Google Scholar 

  12. D. G. Miller, M. A. Adam, and A. D. Miller. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell Biol. 10:4239–4242 (1990).

    PubMed  CAS  Google Scholar 

  13. L. Naldini, U. Blomer, P. Gallay, D. Ory, R. Mulligan, F. H. Gage, I. M. Verma, and D. Trono. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 272:263–267 (1996) doi:10.1126/science.272.5259.263.

    Article  PubMed  CAS  Google Scholar 

  14. E. Costello, M. Munoz, E. Buetti, P. R. Meylan, H. Diggelmann, and M. Thali. Gene transfer into stimulated and unstimulated T lymphocytes by HIV-1-derived lentiviral vectors. Gene Ther. 7:596–604 (2000) doi:10.1038/sj.gt.3301135.

    Article  PubMed  CAS  Google Scholar 

  15. D. B. Kohn. Lentiviral vectors ready for prime-time. Nat. Biotechnol. 25:65–66 (2007) doi:10.1038/nbt0107-65.

    Article  PubMed  CAS  Google Scholar 

  16. L. E. Ailles, and L. Naldini. HIV-1-derived lentiviral vectors. Curr. Top. Microbiol. Immunol. 261:31–52 (2002).

    PubMed  CAS  Google Scholar 

  17. J. Cronin, X. Y. Zhang, and J. Reiser. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5:387–398 (2005) doi:10.2174/1566523054546224.

    Article  PubMed  CAS  Google Scholar 

  18. V. Sandrin, S. J. Russell, and F. L. Cosset. Targeting retroviral and lentiviral vectors. Curr. Top. Microbiol. Immunol. 281:137–178 (2003).

    PubMed  CAS  Google Scholar 

  19. E. Verhoeyen, and F. L. Cosset. Surface-engineering of lentiviral vectors. J. Gene Med. 6(Suppl 1):S83–S94 (2004) doi:10.1002/jgm.494.

    Article  PubMed  CAS  Google Scholar 

  20. R. Waehler, S. J. Russell, and D. T. Curiel. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8:573–587 (2007) doi:10.1038/nrg2141.

    Article  PubMed  CAS  Google Scholar 

  21. D. Lavillette, S. J. Russell, and F. L. Cosset. Retargeting gene delivery using surface-engineered retroviral vector particles. Curr. Opin. Biotechnol. 12:461–466 (2001) doi:10.1016/S0958-1669(00)00246-9.

    Article  PubMed  CAS  Google Scholar 

  22. S. Ager, B. H. Nilson, F. J. Morling, K. W. Peng, F. L. Cosset, and S. J. Russell. Retroviral display of antibody fragments; interdomain spacing strongly influences vector infectivity. Hum. Gene Ther. 7:2157–2164 (1996) doi:10.1089/hum.1996.7.17-2157.

    Article  PubMed  CAS  Google Scholar 

  23. M. Marin, D. Noel, S. Valsesia-Wittman, F. Brockly, M. Etienne-Julan, S. Russell, F. L. Cosset, and M. Piechaczyk. Targeted infection of human cells via major histocompatibility complex class I molecules by Moloney murine leukemia virus-derived viruses displaying single-chain antibody fragment-envelope fusion proteins. J. Virol. 70:2957–2962 (1996).

    PubMed  CAS  Google Scholar 

  24. S. Chowdhury, K. A. Chester, J. Bridgewater, M. K. Collins, and F. Martin. Efficient retroviral vector targeting of carcinoembryonic antigen-positive tumors. Mol. Ther. 9:85–92 (2004) doi:10.1016/j.ymthe.2003.10.004.

    Article  PubMed  CAS  Google Scholar 

  25. S. Funke, A. Maisner, M. D. Muhlebach, U. Koehl, M. Grez, R. Cattaneo, K. Cichutek, and C. J. Buchholz. Targeted cell entry of lentiviral vectors. Mol. Ther. 16:1427–1436 (2008) doi:10.1038/mt.2008.128.

    Article  PubMed  CAS  Google Scholar 

  26. K. Morizono, G. Bristol, Y. M. Xie, S. K. Kung, and I. S. Chen. Antibody-directed targeting of retroviral vectors via cell surface antigens. J. Virol. 75:8016–8020 (2001) doi:10.1128/JVI.75.17.8016-8020.2001.

    Article  PubMed  CAS  Google Scholar 

  27. K. Morizono, Y. Xie, G. E. Ringpis, M. Johnson, H. Nassanian, B. Lee, L. Wu, and I. S. Chen. Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nat. Med. 11:346–352 (2005) doi:10.1038/nm1192.

    Article  PubMed  CAS  Google Scholar 

  28. P. Roux, P. Jeanteur, and M. Piechaczyk. A versatile and potentially general approach to the targeting of specific cell types by retroviruses: application to the infection of human cells by means of major histocompatibility complex class I and class II antigens by mouse ecotropic murine leukemia virus-derived viruses. Proc. Natl. Acad. Sci. U.S.A. 86:9079–9083 (1989) doi:10.1073/pnas.86.23.9079.

    Article  PubMed  CAS  Google Scholar 

  29. A. L. Boerger, S. Snitkovsky, and J. A. Young. Retroviral vectors preloaded with a viral receptor-ligand bridge protein are targeted to specific cell types. Proc. Natl. Acad. Sci. U.S.A. 96:9867–9872 (1999) doi:10.1073/pnas.96.17.9867.

    Article  PubMed  CAS  Google Scholar 

  30. L. Yang, L. Bailey, D. Baltimore, and P. Wang. Targeting lentiviral vectors to specific cell types in vivo. Proc. Natl. Acad. Sci. U.S.A. 103:11479–11484 (2006) doi:10.1073/pnas.0604993103.

    Article  PubMed  CAS  Google Scholar 

  31. A. H. Lin, N. Kasahara, W. Wu, R. Stripecke, C. L. Empig, W. F. Anderson, and P. M. Cannon. Receptor-specific targeting mediated by the coexpression of a targeted murine leukemia virus envelope protein and a binding-defective influenza hemagglutinin protein. Hum. Gene Ther. 12:323–332 (2001) doi:10.1089/10430340150503957.

    Article  PubMed  CAS  Google Scholar 

  32. H. Yang, L. Zeigler, K. I. Joo, T. Cho, Y. Lei, and P. Wang. Gamma-retroviral vectors enveloped with an antibody and an engineered fusogenic protein achieved antigen-specific targeting. Biotechnol. Bioeng. 19:861–872 (2008).

    Google Scholar 

  33. C. Lois, E. J. Hong, S. Pease, E. J. Brown, and D. Baltimore. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science. 295:868–872 (2002) doi:10.1126/science.1067081.

    Article  PubMed  CAS  Google Scholar 

  34. A. L. Szymczak, C. J. Workman, Y. Wang, K. M. Vignali, S. Dilioglou, E. F. Vanin, and D. A. Vignali. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat. Biotechnol. 22:589–594 (2004) doi:10.1038/nbt957.

    Article  PubMed  CAS  Google Scholar 

  35. J. Fang, J.-J. Qian, S. Yi, T. C. Harding, G. H. Tu, M. VanRoey, and K. Jooss. Stable antibody expression at therapeutic levels using the 2A peptide. Nat. Biotech. 23:584–590 (2005) doi:10.1038/nbt1087.

    Article  CAS  Google Scholar 

  36. K. I. Joo, and P. Wang. Visualization of targeted transduction by engineered lentiviral vectors. Gene Ther. 15:1348–1396 (2008) doi:10.1038/gt.2008.87.

    Article  Google Scholar 

  37. A. B. Cosimi, R. C. Burton, R. B. Colvin, G. Goldstein, F. L. Delmonico, M. P. LaQuaglia, N. Tolkoff-Rubin, R. H. Rubin, J. T. Herrin, and P. S. Russell. Treatment of acute renal allograft rejection with OKT3 monoclonal antibody. Transplantation. 32:535–539 (1981) doi:10.1097/00007890-198112000-00018.

    Article  PubMed  CAS  Google Scholar 

  38. A. B. Cosimi, R. B. Colvin, R. C. Burton, R. H. Rubin, G. Goldstein, P. C. Kung, W. P. Hansen, F. L. Delmonico, and P. S. Russell. Use of monoclonal antibodies to T-cell subsets for immunologic monitoring and treatment in recipients of renal allografts. N. Engl. J. Med. 305:308–314 (1981).

    PubMed  CAS  Google Scholar 

  39. M. G. Rudolph, R. L. Stanfield, and I. A. Wilson. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24:419–466 (2006) doi:10.1146/annurev.immunol.23.021704.115658.

    Article  PubMed  CAS  Google Scholar 

  40. M. Reth. Antigen receptors on B lymphocytes. Annu. Rev. Immunol. 10:97–121 (1992) doi:10.1146/annurev.iy.10.040192.000525.

    Article  PubMed  CAS  Google Scholar 

  41. Y. E. Lu, T. Cassese, and M. Kielian. The cholesterol requirement for sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. J. Virol. 73:4272–4278 (1999).

    PubMed  CAS  Google Scholar 

  42. I. Mellman, R. Fuchs, and A. Helenius. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 55:663–700 (1986) doi:10.1146/annurev.bi.55.070186.003311.

    Article  PubMed  CAS  Google Scholar 

  43. M. Kielian, and F. A. Rey. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat. Rev. Microbiol. 4:67–76 (2006) doi:10.1038/nrmicro1326.

    Article  PubMed  CAS  Google Scholar 

  44. D. L. Gibbons, M. C. Vaney, A. Roussel, A. Vigouroux, B. Reilly, J. Lepault, M. Kielian, and F. A. Rey. Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus. Nature. 427:320–325 (2004) doi:10.1038/nature02239.

    Article  PubMed  CAS  Google Scholar 

  45. M. Umashankar, C. Sanchez-San Martin, M. Liao, B. Reilly, A. Guo, G. Taylor, and M. Kielian. Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J. Virol. 82:9245–9253 (2008) doi:10.1128/JVI.00975-08.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank April Tai, Lili Yang and Steven Froelich for critical reading of the manuscript, and the USC Norris Center Cell and Tissue Imaging Core. This work was supported by a National Institute of Health grant. The following reagents was obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH: Monoclonal Antibody to HIV-1 p24 (AG3.0) from Dr. Jonathan Allan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Joo, KI., Ziegler, L. et al. Cell Type-Specific Targeting with Surface-Engineered Lentiviral Vectors Co-displaying OKT3 Antibody and Fusogenic Molecule. Pharm Res 26, 1432–1445 (2009). https://doi.org/10.1007/s11095-009-9853-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9853-y

KEY WORDS

Navigation