Skip to main content

Advertisement

Log in

The Narrow-Spectrum HDAC Inhibitor Entinostat Enhances NKG2D Expression Without NK Cell Toxicity, Leading to Enhanced Recognition of Cancer Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Natural killer (NK) cell cytotoxicity correlates with the ligation of activating receptors (e.g., NKG2D) by their ligands (e.g., MHC class I–related chains [MIC] A and B) on target cells. Histone deacetylase inhibitors (HDACi) at high concentrations inhibit tumor growth and can increase NKG2D ligand expression on tumor targets, but are widely regarded as toxic to NK cells.

Methods

We investigated the mechanism of entinostat, a benzamide-derivative narrow-spectrum HDACi, in augmenting the cytotoxicity of NK cells against human colon carcinoma and sarcoma by assessing gene and protein expression, histone acetylation, and cytotoxicity in in vitro and murine models.

Results

We observed that entinostat dose- and time-dependent increase in MIC expression in tumor targets and NKG2D in primary human NK cells, both correlating with increased acetylated histone 3 (AcH3) binding to associated promoters. Entinostat pretreatment of colon carcinoma and sarcoma cells, NK cells, or both led to enhanced overall cytotoxicity in vitro, which was reversed by NKG2D blockade, and inhibited growth of tumor xenografts. Lastly, we showed decreased expression of MICA and ULBP2 transcription in primary human osteosarcoma.

Conclusions

Entinostat enhances NK cell killing of cancer cells through upregulation of both NKG2D and its ligands, suggesting an attractive approach for augmenting NK cell immunotherapy of solid tumors such as colon carcinoma and sarcomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

7-AAD:

7-Amino-actinomycin D

AcH3:

acetylated histone 3

AcH4:

acetyl-histone 4

APC:

allophycocyanin

ChIP:

chromatin immunoprecipitation

FFLuc:

firefly luciferase

HDAC:

Histone deacetylase

HDACi:

Histone deacetylase inhibitors

MIC:

MHC class I–related chains

SAHA:

suberoylanilide hydroxamic acid

ULBP:

UL16-binding proteins

VPA:

valproic acid

REFERENCES

  1. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–7.

    Article  CAS  PubMed  Google Scholar 

  2. Cho D, Shook DR, Shimasaki N, Chang YH, Fujisaki H, Campana D. Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res. 2010;16:3901–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    Article  CAS  PubMed  Google Scholar 

  4. Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R, et al. Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res. 2002;62:6178–86.

    CAS  PubMed  Google Scholar 

  5. Sutherland CL, Rabinovich B, Chalupny NJ, Brawand P, Miller R, Cosman D. ULBPs, human ligands of the NKG2D receptor, stimulate tumor immunity with enhancement by IL-15. Blood. 2006;108:1313–9.

    Article  CAS  PubMed  Google Scholar 

  6. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science. 1999;285:730–2.

    Article  CAS  PubMed  Google Scholar 

  7. Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC, et al. NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol. 2001;167:5527–30.

    Article  CAS  PubMed  Google Scholar 

  8. Burgess SJ, Marusina AI, Pathmanathan I, Borrego F, Coligan JE. IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol. 2006;176:1490–7.

    Article  CAS  PubMed  Google Scholar 

  9. Bubenik J. MHC class I down-regulation: tumour escape from immune surveillance? (review). Int J Oncol. 2004;25:487–91.

    CAS  PubMed  Google Scholar 

  10. Mariani E, Tarozzi A, Meneghetti A, Cattini L, Facchini A. Human osteosarcoma cell susceptibility to natural killer cell lysis depends on CD54 and increases after TNF alpha incubation. FEBS letters. 1997;406:83–8.

    Article  CAS  PubMed  Google Scholar 

  11. Buddingh EP, Schilham MW, Ruslan SE, Berghuis D, Szuhai K, Suurmond J, et al. Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells. Cancer Immunol Immunother. 2011;60:575–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A. Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res. 2007;31:1393–402.

    Article  CAS  PubMed  Google Scholar 

  13. Kato N, Tanaka J, Sugita J, Toubai T, Miura Y, Ibata M, et al. Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia. 2007;21:2103–8.

    Article  CAS  PubMed  Google Scholar 

  14. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 2005;65:6321–9.

    Article  CAS  PubMed  Google Scholar 

  15. Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U, et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood. 2008;111:1428–36.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang C, Wang Y, Zhou Z, Zhang J, Tian Z. Sodium butyrate upregulates expression of NKG2D ligand MICA/B in HeLa and HepG2 cell lines and increases their susceptibility to NK lysis. Cancer Immunol Immunother. 2009;58:1275–85.

    Article  CAS  PubMed  Google Scholar 

  17. Lundqvist A, Abrams SI, Schrump DS, Alvarez G, Suffredini D, Berg M, et al. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res. 2006;66:7317–25.

    Article  CAS  PubMed  Google Scholar 

  18. Ogbomo H, Michaelis M, Kreuter J, Doerr HW, Cinatl Jr J. Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett. 2007;581:1317–22.

    Article  CAS  PubMed  Google Scholar 

  19. Kelly-Sell MJ, Kim YH, Straus S, Benoit B, Harrison C, Sutherland K, et al. The histone deacetylase inhibitor, romidepsin, suppresses cellular immune functions of cutaneous T-cell lymphoma patients. Am J Hematol. 2012;87:354–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A. 1999;96:4592–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Jaboin J, Wild J, Hamidi H, Khanna C, Kim CJ, Robey R, et al. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res. 2002;62:6108–15.

    CAS  PubMed  Google Scholar 

  22. Bridle BW, Chen L, Lemay CG, Diallo JS, Pol J, Nguyen A, et al. HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Mol Ther. 2013;21:887–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, et al. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. PLoS One. 2012;7:e30815.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Berghuis D, Schilham MW, Vos HI, Santos SJ, Kloess S, Buddingh EP, et al. Histone deacetylase inhibitors enhance expression of NKG2D ligands in Ewing sarcoma and sensitize for natural killer cell-mediated cytolysis. Clin Sarcoma Res. 2012;2:8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hughes DP, Thomas DG, Giordano TJ, Baker LH, McDonagh KT. Cell surface expression of epidermal growth factor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res. 2004;64:2047–53.

    Article  CAS  PubMed  Google Scholar 

  26. Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, et al. Adapting a transforming growth factor beta-related tumor protection strategy to enhance antitumor immunity. Blood. 2002;99:3179–87.

    Article  CAS  PubMed  Google Scholar 

  27. Warrenand HS, Rana PM. An economical adaptation of the RosetteSep procedure for NK cell enrichment from whole blood, and its use with liquid nitrogen stored peripheral blood mononuclear cells. J Immunol Methods. 2003;280:135–8.

    Article  Google Scholar 

  28. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One. 2012;7:e30264.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Gore L, Rothenberg ML, O’Bryant CL, Schultz MK, Sandler AB, Coffin D, et al. A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients with refractory solid tumors and lymphomas. Clin Cancer Res. 2008;14:4517–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Man TK, Chintagumpala M, Visvanathan J, Shen J, Perlaky L, Hicks J, et al. Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res. 2005;65:8142–50.

    Article  CAS  PubMed  Google Scholar 

  31. Kato Y, Yoshimura K, Shin T, Verheul H, Hammers H, Sanni TB, et al. Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res. 2007;13:4538–46.

    Article  CAS  PubMed  Google Scholar 

  32. Schmudde M, Braun A, Pende D, Sonnemann J, Klier U, Beck JF, et al. Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett. 2008;272:110–21.

    Article  CAS  PubMed  Google Scholar 

  33. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. The Biochemical Journal. 2008;409:581–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ryan QC, Headlee D, Acharya M, Sparreboom A, Trepel JB, Ye J, et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol. 2005;23:3912–22.

    Article  CAS  PubMed  Google Scholar 

  35. Bagatell R, Gore L, Egorin MJ, Ho R, Heller G, Boucher N, et al. Phase I pharmacokinetic and pharmacodynamic study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin Cancer Res. 2007;13:1783–8.

    Article  CAS  PubMed  Google Scholar 

  36. Epling-Burnette PK, Bai F, Painter JS, Rollison DE, Salih HR, Krusch M, et al. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood. 2007;109:4816–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Varker KA, Terrell CE, Welt M, Suleiman S, Thornton L, Andersen BL, et al. Impaired natural killer cell lysis in breast cancer patients with high levels of psychological stress is associated with altered expression of killer immunoglobin-like receptors. J Surg Res. 2007;139:36–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sconocchia G, Lau M, Provenzano M, Rezvani K, Wongsena W, Fujiwara H, et al. The antileukemia effect of HLA-matched NK and NK-T cells in chronic myelogenous leukemia involves NKG2D-target-cell interactions. Blood. 2005;106:3666–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rao-Bindal K, Zhou Z, Kleinerman ES. MS-275 sensitizes osteosarcoma cells to Fas ligand-induced cell death by increasing the localization of Fas in membrane lipid rafts. Cell Death Dis. 2012;3:e369.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Rao-Bindal K, Koshkina NV, Stewart J, Kleinerman ES. The histone deacetylase inhibitor, MS-275 (Entinostat), downregulates c-FLIP, sensitizes osteosarcoma cells to FasL, and induces the regression of osteosarcoma lung metastases. Curr Cancer Drug Targets 2013;13:411–22.

    Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge Laurence J. N. Cooper for initiating the discussions that led to this work, Joya Chandra for sharing her expertise in epigenetics and critiquing the manuscript, and Shana Palla for guiding our statistical analysis. Financial support for this research was provided to D.A.L. and D.P.M.H. by the Brenda and Howard Johnson Fund, the Physician Scientist Program of MD Anderson Cancer Center, and the Sunbeam Foundation. Financial support to S.Z. was provided by the National Natural Science Foundation of China (81071858; 81273216) and Innovation Program of Shanghai Municipal Education Commission (11ZZ105). STR DNA fingerprinting was done by the Characterized Cell Line Core at MD Anderson Cancer Center, funded by NCI # CA16672. The MSC employed in this work were provided by the Tulane Center for Gene Therapy through a grant from NCRR of the NIH, Grant # P40RR017447.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiguo Zhu or Dean A. Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Map indicating the sequence and location of human MICA, MICB and DAP10 promoters, including ATG translation start sites and the promoter-specific forward and reverse PCR primers, relative to the transcription initiation sites (TIS). (JPEG 167 kb)

Supplemental Fig. 2

Enhanced expression of GFP-Luc transgene in HT1080-GFP-Luc cells treated 24 h with 0.1 – 1 μM entinostat. (JPEG 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Denman, C.J., Cobanoglu, Z.S. et al. The Narrow-Spectrum HDAC Inhibitor Entinostat Enhances NKG2D Expression Without NK Cell Toxicity, Leading to Enhanced Recognition of Cancer Cells. Pharm Res 32, 779–792 (2015). https://doi.org/10.1007/s11095-013-1231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1231-0

KEY WORDS

Navigation